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Abstract  

While radiotherapy is critically important for treating cancer, it is observed that patients tend to 

respond differently based on their genetics such as telomere length, which happens to be a crucial 

element of radiosensitivity. While it is known that shorter telomeres have greater sensitivity to 

radiation, predicting a person's response using only this metric is not possible. The objective of 

this project is to create a predictive model for radiosensitivity through hybrid deep learning 

approaches. Classical models, e.g., decision trees or linear regression, are not able to model 

intricate relationships in genomic data, especially when combining multiple features. The 

suggested method features the integration of Convolutional Neural Networks (CNNs), Long Short-

Term Memory (LSTM) networks, and Autoencoders. CNNs extract spatial features in telomere 

sequence data, LSTMs learn temporal patterns, and Autoencoders compress data dimensionality 

and learn latent features. By combining these models, the method enhances prediction precision 

and offers a more complete assessment of radiosensitivity. This might result in more tailored 

radiotherapy, maximizing treatment planning and improving clinical decision-making in cancer 

therapy 

Keywords: Radiosensitivity, Telomere Length, Hybrid Deep Learning, CNN, LSTM, LGBM 

Classifier,  Tkinter, Classification. 

I. INTRODUCTION 

Radiotherapy is one of the major pillars in the treatment of cancer and is used in about 50% of patients 

with cancer. Nevertheless, different people tend to respond differently to radiotherapy for many genetic 

and biological reasons. Having telomeres, which are protective structures composed of a mixture of 

DNA and proteins situated at the extremities of a chromosome, is considered to be a very determinant 

factor as to why some people are more sensitive to radiation than others. Studies suggest that more 

sensitive short telomeres, which appear to be one of the most advanced genomic health markers, cause 

greater intensity of molecular damage, and hence, negative and more severe reactions to the treatment 

interventions. In contrast, longer telomeres may indicate greater resistance to radiation, making it more 

difficult to develop optimal therapeutic regimes.However, as much as these correlations have been 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25022512 Volume 16, Issue 2, April-June 2025 2 

 

established, precise individual-level prediction of radiosensitivity from telomere length poses a 

challenging issue due to the multidimensional and complex nature of genomic information 

Conventional predictive models like linear regression, decision trees, and traditional machine learning 

algorithms fail to capture the nonlinear and hierarchical natures of the genetic sequences. To overcome 

this drawback, deep learning provides an efficacious choice. The current study presents a hybrid deep 

learning model that combines Convolutional Neural Networks (CNNs), Long Short-Term Memory 

(LSTM) networks, and Autoencoders to improve the predictive accuracy of radiosensitivity from 

telomere length. 

CNNs are employed for extracting spatial patterns and sequence features from genomic data. LSTMs 

extract temporal dependencies from telomere sequences, which are essential to comprehend cumulative 

genomic changes. Autoencoders reduce dimensionality and extract latent features, enhancing the model 

generalization capabilities. 

The integration of these architectures will improve the accuracy of radiosensitivity prediction and 

perform a comprehensive analysis of the patient's actual response to radiotherapy. This will further help 

in creating personalized treatment strategies by optimizing radiation amounts to achieve greater 

therapeutic outcomes with minimal adverse consequences.Additionally, in order to achieve effective 

deployment in healthcare settings, the integrated system has a user-friendly design that allows users to 

input patient demographics easily and generate correct forecasts. 

 

The incorporation of explainability methods ensures that the decisions made by the model remain 

interpretable, allowing medical professionals to trust the system 

With the help of state-of-the-art deep learning algorithms, genomic data analysis, and clinical decision-

support systems, this study is seeking to transform personalized radiotherapy with enhanced patient 

outcomes and increased efficacy in cancer treatment 

 

II. BACKGROUND 

In this section, Radiosensitivity prediction has been an important research field in individualized cancer 

therapy. Statistical models and traditional machine learning methods like linear regression and decision 

trees have been employed to study genetic factors affecting patient response to radiotherapy.
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A. Benefits 

Enhanced Prediction Accuracy:The hybrid deep learning architecture brings together CNNs, LSTMs, 

and Autoencoders to extract spatial, temporal, and hidden genomic characteristics, maximizing the 

accuracy of radiosensitivity predictions Advanced Genomic Data Analysis – The model is better at 

handling sophisticated genetic sequences compared to classical statistical or machine learning methods, 

revealing underlying patterns in telomere variations  

Clinical Decision Support: The system gives understandable predictions, assisting oncologists and 

medical specialists with making knowledgeable decisions regarding patient treatment plans. 

User-Friendly Interface: A health-compatible interface enables practitioners to easily enter patient 

information and receive accurate predictions, rendering the model more feasible for real-world 

application. 

B. Challenges  

Data Availability &Quality:There is limited access to high-quality, labeled genomic data with telomere 

length measurements and radiosensitivity outcomes, which could impede model training and validation. 

 

Computational Complexity – Deep learning models, particularly hybrid architectures, are 

computationally intensive and need extensive training, rendering implementation resource-intensive. 

Model Interpretability – Even with the inclusion of explainability methods, deep learning models can be 

viewed as black boxes, and it is challenging for clinicians to put complete trust in predictions. 

Generalization Across Populations – Genetic heterogeneity across patients from different genetic and 

ethnic origins can impact model performance and necessitate the use of diverse training datasets to 

provide robustness 

Regulatory and Ethical Issues – The application of AI to medical decision-making needs to meet 

regulatory requirements (e.g., HIPAA, GDPR) in order to preserve patient data privacy, security, and 

ethical aspects  
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Role of DL in Addressing These Challenges Technology is essential in facilitating precise, efficient, and 

scalable prediction of radiosensitivity from telomere length. The combination of deep learning, genomic 

data analysis, and clinical decision-support systems guarantees that the model can handle intricate 

genetic data while offering interpretable and trustworthy outputs for clinicians Convolutional Neural 

Networks (CNNs): Uncover spatial patterns and sequence features in genomic data to detect major 

telomere-associated structures  

Long Short-Term Memory (LSTM) Networks: Identify temporal relations in telomere sequences to 

examine genomic change accumulation over time. Autoencoders: Lower data dimensions and learn 

latent features, enhancing the model to generalize from small datasets.  

High-Performance Computing (HPC) – Deep learning models need GPU acceleration (e.g., NVIDIA 

CUDA, TensorFlow, or PyTorch) to train and make inferences efficiently. Cloud-based platforms (e.g., 

AWS, Google Cloud AI, or Azure) may be employed for scalable model deployment in clinical 

environments. 

Explainable AI (XAI) & Model Interpretability – Methods like SHAP (SHapley Additive 

Explanations) or LIME (Local Interpretable Model-agnostic Explanations) provide guarantees of 

transparency and AI-driven prediction trustworthiness. Aids clinicians in comprehension of the model's 

prediction-making process, which builds confidence in decision-making. User-Friendly Clinical 

Interface – Web-based or desktop-based applications enable healthcare professionals to enter patient 

information and obtain radiosensitivity predictions seamlessly. Electronic Health Record (EHR) 

integration may automate data processing and retrieval for real-time decision support.  

Data Security & Compliance – Secure access controls, encryption, and regulatory compliance (e.g., 

HIPAA, GDPR) preserve patient data privacy and confidentiality. Blockchain technology can be 

investigated to guarantee the integrity and security of genomic data records. Using these technologies, 

the project intends to improve predictive accuracy, facilitate personalized treatment planning, and assist 

oncologists in data-driven decision making, eventually optimizing radiotherapy efficacy and patient 

outcomes 

III. RELATED WORK 

A number of research works have been conducted to determine the connection between telomere 

length and radiosensitivity and also the use of deep learning for genomic analysis and radiotherapy. 

Studies have found that decreased telomere length enhances radiosensitivity, causing more DNA 

damage and radiotherapy-related side effects. Research by Sitte et al. (2020) and Cesare & Reddel 

(2010) has explored telomere shortening and its contribution to genomic instability, while Fang et al. 

(2019) showed that telomere length can be used as a biomarker for individualized radiation response. 

Conventional predictive models like linear regression, decision trees, and support vector machines 

(SVMs) have been employed to study radiosensitivity, but such methods fail to identify the intricate, 

nonlinear genomic sequence patterns. Scott et al. (2018) sought to utilize machine learning methods to 

improve radiation dose prediction but encountered difficulties in feature selection because of the 

intricacy of genomic data. 

In addition, the requirement of explainability of AI in medicine has inspired techniques like 

interpretability methods LIME (Ribeiro et al., 2016) and SHAP (Lundberg et al., 2017), giving light into 
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the decision-making of a model. However, little existing research deals with either genomic data 

analysis or general deep learning implementations in broader clinical areas and doesn't focus 

specifically on a hybrid deep learning approach for predicting radiosensitivity. This project extends 

previous work through the combination of CNNs, LSTMs, and Autoencoders for improving prediction 

accuracy, utilizing explainability techniques for better interpretability, and creating an easy-to-use 

interface to ensure clinical use in radiotherapy treatment planning. 

IV. PROPOSED SOLUTION 

This system proposes to predict sensitivity to radiation therapy with respect to telomere length using a 

hybrid deep learning model with Convolutional Neural Networks (CNNs) and Long Short Term 

Memory (LSTM) networks. The goal of the proposed system is improving prediction precision, enabling 

individualized radiotherapy planning, and supplying interpretable conclusions regarding radiation 

therapy response. To guarantee efficiency and usability, the system is made up of several interconnected 

modules, ranging from data preprocessing to model assessment, in which healthcare providers and 

researchers can feed patient data and obtain accurate radiosensitivity predictions. The system also has 

LGBM (Light Gradient Boosting Machine) Classifier, a conventional machine learning model, in order 

to compare its performance with the deep learning method 

 

A. MODULES INTRODUCTION 

1. Dataset Upload Module: 

The module enables users to upload datasets with data pertaining to telomere length and 

radiosensitivity levels. It provides compatibility with various file formats (CSV, Excel) and checks 

for the integrity of the data before processing. 

 

2. Preprocessing Module: 

The preprocessing module takes care of data cleaning, missing value handling, label encoding, and 

feature scaling to get the dataset ready for model training. It also creates a class distribution plot, 

assisting in the analysis of the dataset balance and checking for any bias. 

 

3. Data Splitting Module: 

In order to facilitate effective model assessment and avoid overfitting, this module splits the dataset 

into training and test subsets. It ensures that an adequate amount of data is utilized for model 

learning while holding back some for performance checking. 

 

4. Model Training Module: 

This module uses two different models to forecast radiosensitivity levels: 

 

LGBM Classifier: A gradient boosting model that accurately classifies radiosensitivity levels while 

being highly accurate and computationally efficient. 

Hybrid Model (CNN + LSTM): This deep learning model integrates CNNs for extracting features 

and LSTMs for recognizing sequential patterns, enhancingthe accuracy of prediction and identifying 

complex genomic relationships. 
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5. Prediction Module: 

After training the model, the prediction module is applied to predict new samples into 

radiosensitivity levels: high, moderate, or low. New patient data can be input by users, and the 

trained model will output radiosensitivity predictions, aiding personalized radiotherapy planning. 

 

6. Evaluation and Visualization Module: 

This module evaluates the performance of the trained models by calculating essential performance 

metrics like accuracy, precision, recall, and F1-score. It also produces confusion matrices and 

classification reports so that users can compare model performance and know their reliability in 

practical applications. 

 

Through the integration of these modules, the system put forward here can enhance radiosensitivity 

prediction accuracy, streamline cancer treatment planning, and offer medical practitioners a credible 

decision-support tool. 

 

B. METHODOLOGY 

The framework for individual radiosensitivity prediction based on telomere length includes a systematic 

pipeline consisting of data preprocessing, feature extraction, model training, and prediction with hybrid 

deep learning models. The method assures that the system properly extracts both spatial and sequential 

relationships in genomic data, leading to increased prediction accuracy. The steps below detail the 

methodology employed: 

1. Data Preprocessing and Collection 

Dataset Collection: The system utilizes datasets with data on telomere length and respective 

radiosensitivity levels (high, moderate, low). 

Data Cleaning: Missing values, duplicates, and inconsistencies are managed to enhance data quality. 

Label Encoding: Radiosensitivity levels (high, moderate, low) are encoded into numerical labels for 

model training. 

Feature Scaling: Normalization methods such as Min-Max Scaling or Standardization are used to 

maintain numerical stability. 

Class Distribution Analysis: Class distribution plot is created to reveal imbalances and use resampling 

methods if any. 

2. Data Splitting 

The data is divided into training and testing sets (for example, 80-20 or 70-30 proportion) to determine 

model performance successfully. 

Stratified sampling balances the radiosensitivity classes in the two sets with no class imbalance. 
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3. Feature Extraction and Model Implementation 

(a) Light Gradient Boosting Machine (LGBM) Classifier 

A gradient boosting algorithm is used for baseline classification, utilizing decision trees for effective and 

quick learning. 

The model is also hyperparameter-optimized (learning rate, number of estimators, depth). 

(b) Hybrid Deep Learning Model (CNN + LSTM) 

Convolutional Neural Networks (CNNs): Identify spatial features and patterns in genomic sequence 

information. 

Long Short-Term Memory (LSTM): Grasps sequential dependencies within telomere length 

fluctuations, enabling the model to comprehend cumulative genetic variations. 

Autoencoders: Diminish data dimensionality and extract hidden features, enhancing model 

generalization. 

Dropout and Batch Normalization: Used to avoid overfitting and normalize model training. 

4. Model Training and Optimization 

Both the models (LGBM and CNN+LSTM) are trained on the training dataset with the optimization of 

hyperparameters with methods such as Grid Search or Bayesian Optimization. 

Loss Function: Categorical Cross-Entropy for accuracy in classification. 

Optimizer: Adam or RMSprop is used for optimal convergence. 

Early Stopping: Checks validation loss to avoid overfitting. 

5. Prediction Module 

After training, the models make predictions of radiosensitivity levels (high, moderate, low) for new 

patient samples. 

The prediction confidence of the hybrid model is checked to guarantee reliability. 

6. Model Evaluation and Visualization 

Performance Metrics: Accuracy, Precision, Recall, and F1-score are calculated for each model. 
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Confusion Matrices & Classification Reports: Give information about model efficacy in classifying 

radiosensitivity levels. 

Receiver Operating Characteristic (ROC) Curve: Tests the model's sensitivity and specificity. 

7. Explainability & User Interface 

Explainable AI (XAI) methods such as SHAP (SHapley Additive explanations) or LIME (Local 

Interpretable Model-Agnostic Explanations) are incorporated to explain model decisions so that medical 

experts can rely on predictions. 

User-Friendly Interface: An intuitive UI enables healthcare providers to upload data, view predictions, 

and interpret patient reactions. 

8. Deployment & Real-World Integration 

The deployed final model is used as a web-based or cloud-based application in order to enable real-time 

use by healthcare experts. 

The system is validated with actual patient data from the real world, providing robustness prior to 

incorporation into clinical pathways. 

Through this process, the system provides an overall and efficient mechanism for predicting 

radiosensitivity, ultimately resulting in enhanced personalized radiotherapy treatment and improved 

cancer treatment results. 

 

V. IMPLEMENTATION: 

[1]USE CASE DAIGRAM: 

Use case diagram of the designed radiosensitivity prediction system depicts the interaction of healthcare 

professionals with the system. The users provide patient data involving telomere length, which is 

preprocessed to normalize and clean features. Two models (LGBM and a deep learning model 

incorporating CNN+LSTM) are trained by the system to forecast levels of radiosensitivity (high, 

moderate, low). Healthcare professionals can enter new patient information to get predictions and 

visualize outcomes via an easy-to-use interface. The system also offers explainability tools to enable 

doctors to comprehend predictions, providing trustworthy decision-making for personalized radiotherapy 

treatment, enhancing cancer care outcomes. 

[1] USECASE DIAGRAM: 
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[2] ACTIVITY DIAGRAM: 
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[3] SEQUENCE DIAGRAM: 

 

 

[4] COMPONENT DIAGRAM: 

 

Implementation of the radiosensitivity prediction system is a pipeline-driven process with incorporation 

of data processing, deep learning models, and user interface design. The main steps used are: 

Dataset Collection & Preprocessing: 

Telomere length and radiosensitivity labeled dataset is uploaded. 

Data cleaning, label encoding, and feature scaling are applied. 

Dataset splitting into training and testing datasets to avoid overfitting. 

Model Development: 

LGBM Classifier: Baseline classification is done using a LightGBM model. 

Hybrid Deep Learning Model (CNN + LSTM): 

CNN learns spatial patterns from telomere sequences. 
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LSTM learns temporal dependencies, enhancing predictive performance. 

Autoencoders compress dimensionality, learning key features. 

Models are trained and optimized with loss functions, optimizers (Adam, RMSprop), and dropout layers 

to avoid overfitting. 

Prediction & Evaluation: 

Trained models make predictions of radiosensitivity levels for new patient data. 

Performance metrics (Accuracy, Precision, Recall, F1-score) and confusion matrices are computed. 

Explainability & User Interface: 

Explainable AI (XAI) software such as SHAP or LIME guarantees interpretable outcomes. 

An intuitive web interface enables healthcare professionals to enter data, visualize predictions, and 

examine treatment suggestions. 

Deployment & Integration: 

The model is implemented as a web application or cloud service for real-world deployment. 

It is integrated with clinical databases for easy access to genomic information. 

This end-to-end deployment guarantees precise radiosensitivity prediction, supporting personalized 

radiotherapy treatment for improved cancer care. 

Deployment and Testing 

Testing is a vital stage in making sure that the prediction system for radiosensitivity is accurate, reliable, 

and strong. The project is tested at various levels to ensure its performance: 

Unit Testing: 

Each module like dataset uploading, preprocessing, model training, and prediction is separately tested. 

Makes sure that every function (e.g., label encoding, feature scaling) works properly. 

Integration Testing:Ensures seamless interaction between modules so that data passes smoothly from 

preprocessing to model training and prediction. 

Guarantees web interface properly processes inputs and outputs predictions. 

Model Evaluation & Performance Testing: 

The following metrics like Accuracy, Precision, Recall, and F1-score are calculated for LGBM Classifier 

as well as Hybrid Model (CNN+LSTM). 

Confusion matrices and classification reports are provided to evaluate prediction performance. 

Cross-Validation: 

K-Fold cross-validation guarantees that the model generalizes very well across subsets of data. 
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Avoids overfitting and guarantees consistent accuracy. 

User Acceptance Testing (UAT): 

Administered with health professionals to determine the effectiveness and usability of the system. 

Facilitates interpreting predictions and intuitive interface usage. 

Security & Stress Testing: 

Ensures data security to guard confidential genomic data. 

Tests the robustness of systems under large datasets to validate scalability. 

Following this thorough testing process, the system ensures high precision, efficacy, and real-world 

usability in radio-sensitivity predictions for customized radiotherapy treatment. 

VI. EXECUTION: 

The project execution has a systematic workflow to achieve precise radiosensitivity prediction from 

telomere length using deep learning models. The steps of execution are as follows: 

Dataset Upload & Preprocessing: 

Users upload genomic data with telomere length and levels of radiosensitivity. 

The system preprocesses the data, encodes labels, and normalizes features to maintain consistency. 

A class distribution plot is created to examine data balance. 

Data Splitting & Model Training: 

The data is divided into training and test sets to avoid overfitting. 

Two models are trained: 

LGBM Classifier (Gradient Boosting Model) for baseline predictions. 

Hybrid Deep Learning Model (CNN + LSTM) for sophisticated feature extraction and sequential 

learning. 

Prediction & Model Evaluation: 

The trained models make predictions of radiosensitivity levels (high, moderate, low) for new samples. 

Performance metrics (Accuracy, Precision, Recall, F1-score) and confusion matrices are computed. 

Explainability & Decision Support: 

SHAP or LIME methods are employed to describe model predictions. 

The system ensures that medical staff knows why a particular prediction is generated. 

User Interface & Real-Time Interaction: 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25022512 Volume 16, Issue 2, April-June 2025 13 

 

A web-based UI enables healthcare staff to enter patient information, get predictions, and visualize 

results. 

Users are able to evaluate treatment suggestions and fine-tune radiotherapy plans accordingly. 

Deployment & Continuous Improvement: 

The system is deployed as a cloud-based or standalone program for real-world applications. 

Re-training of the model continuously enhances accuracy with increasing data collected. 

This organized implementation provides a smooth process, making the system efficient, interpretable, 

and clinically 

 

 

Fig1. User Interface of the model 

 

Fig2: Showing results after preprocessing 
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Fig3: Showing results after splitting the dataset 

 

Fig4: Showing results after training LGB Classifier 

 

Fig5: Showing results after training Hybrid Model 
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Fig6: Showing results after predicting a new dataset 

VIII. CONCLUSION 

This work introduces a hybrid deep learning architecture combining CNNs, LSTMs, and Autoencoders 

to make radiosensitivity predictions using telomere length, overcoming the constraints of conventional 

models. As a result of adopting advanced AI techniques, complementary high-performance computing, 

and explainable AI methodologies, The system enhances prediction accuracy, interpretation, and clinical 

decision-making. With the combination of straightforward design and user interface, the system can be 

easily adopted in clinical practice so that oncologists can deliver individualized radiotherapy plans with 

improved accuracy and confidence.Moreover, the system is data security and regulatory compliance-

oriented, thus being a suitable solution for practical medical applications. Finally, this work contributes 

to precision medicine, enhancing radiotherapy efficacy and patient outcomes. 

IX. FUTURE WORK: 

Future development of this project will concentrate on increasing dataset diversity by including larger 

and more representative genomic data sets to enhance model generalization across various 

populations.The integration with Electronic Health Records (EHRs) will make access to patient data 

seamless. Also, increasing trust in AI-generated predictions is possible by improving model 

interpretability using advanced explainability techniques such as attention and SHAP visualizations. 

Computational efficiency will be optimized through the use of edge AI and quantization methods, 

making the model more efficient and flexible for deployment in real-world scenarios. Deployment on 

cloud infrastructures such as AWS, Google Cloud, or Azure will facilitate scalability and access. 

Additional studies will also examine multi-omics integration, bringing together genomic, transcriptomic, 

and epigenomic data for enhanced understanding of radiosensitivity. Finally, real-world validation 

studies and clinical trials in association with hospitals will be executed to develop the system based on 

clinician suggestions and to affirm its effectiveness towards precision medicine. All these forthcoming 

developments will fortify the project as well as make it more scalable and potent to increase customized 

radiotherapy as well as outcomes of the patient 
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