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Abstract 

Artificial intelligence and machine learning technologies are emerging as powerful tools for addressing 

climate change and promoting environmental sustainability. This article explores the three foundational 

pillars of AI's application in environmental contexts: data engineering infrastructure that collects and 

processes vast environmental datasets. These data science methodologies extract actionable insights from 

this information and machine learning models that enable adaptive environmental solutions. While 

highlighting the transformative potential of these technologies across sectors, including energy 

management, agricultural planning, and natural disaster prediction, the article also addresses the 

paradoxical challenge of AI's carbon footprint. The article presents a balanced perspective on maximizing 

beneficial outcomes while minimizing ecological harm by examining the opportunities and 

responsibilities inherent in deploying AI for environmental purposes. The discussion covers strategic 

implementation approaches, prioritizing high-impact applications, developing energy-efficient AI 

systems, creating transparent environmental impact frameworks, and fostering cross-disciplinary 

collaboration to ensure AI contributes positively to global sustainability efforts. 
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Introduction 

Artificial intelligence and machine learning stand at the forefront of technological innovation in addressing 

one of humanity's most pressing challenges: climate change. Global temperatures have risen 

approximately 1.1°C above pre-industrial levels as of 2023. The world is currently on track for a 

temperature rise of 2.5-2.9°C above pre-industrial levels by the end of this century; according to the UNEP 

Emissions Gap Report 2023, the urgency for advanced technological solutions has never been more 

significant [1]. Climate-related disasters have increased in frequency and intensity, with economic losses 

estimated at $520 billion annually, underscoring the critical need for sophisticated tools to monitor, 

predict, and mitigate environmental impacts [1]. AI technologies offer unprecedented capabilities to 

process vast amounts of environmental data, identify patterns invisible to human analysis, and optimize 

resource usage across industries in ways that traditional approaches cannot match. 

Integrating AI into environmental sustainability represents a paradigm shift in approaching climate 

challenges. Rather than relying solely on traditional models and human expertise, AI-powered systems 

can continuously analyze real-time data from countless sources, adapt to changing conditions, and provide 

actionable insights at unimaginable scales. Recent research published in Bioresource Technology indicates 

that machine learning algorithms have demonstrated up to 35.7% improvement in prediction accuracy for 

biomass conversion processes, which are critical for developing sustainable alternatives to fossil fuels [2]. 

These technologies are revolutionizing our capacity to respond to environmental challenges with precision 

and foresight, offering significant advantages over conventional methods. For instance, AI-enhanced 

monitoring systems can now detect methane leaks with 90% greater sensitivity than previous technologies, 

addressing one of the most potent greenhouse gases with 28 times the warming potential of carbon dioxide 

over 100 years [1]. 

This article explores the three pillars supporting AI's role in environmental sustainability: data engineering 

infrastructure that enables massive environmental data collection and processing, data science 

methodologies that extract meaningful insights from this information, and machine learning models that 

power adaptive solutions for sustainability challenges. The UNEP Emissions Gap Report 2023 emphasizes 

that technological innovations, including AI, will be essential to close the emissions gap, which currently 

stands at 23 gigatons of CO₂ equivalent between unconditional nationally determined contributions and 

the 1.5°C pathway [1]. We'll also examine the paradoxical challenge of AI's environmental footprint and 

how the technology sector is working to address this concern through more efficient computing 

approaches. Recent advancements in biomass fermentation processes optimized through machine learning 

have shown potential energy savings of up to 27.8% while simultaneously improving production 

efficiency by 18.6% in experimental settings, demonstrating how AI can address environmental challenges 

and minimize its impact [2]. 

As we navigate the complexities of climate change, the thoughtful application of AI and ML technologies 

offers promising pathways toward a more sustainable future—provided we implement these powerful 

tools with both innovation and responsibility. The UNEP report highlights that current policies without 

additional measures are projected to result in global greenhouse gas emissions of 56 gigatons of CO₂ 

equivalent in 2030, significantly above the 33 gigatons needed to maintain a chance of limiting warming 

to 1.5°C [1]. Meanwhile, emerging research in bioresource technology suggests that AI-optimized systems 

could reduce energy consumption in biological treatment processes by up to 30% while improving 

resource recovery by 25.4% compared to conventional control methods [2]. These quantifiable benefits 

illustrate the critical role that AI must play in our collective efforts to address the climate crisis, making 
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the exploration of these technologies not merely an academic exercise but an essential component of global 

sustainability strategies. 

 

Metric Value 

Current temperature rise above pre-industrial levels 1.1°C 

Projected temperature rise by the end of the century 

(business as usual) 
2.5-2.9°C 

Annual economic losses from climate-related disasters $520 billion 

Methane warming potential vs. CO₂ (over 100 years) 28 times 

The current emissions gap between commitments and the 

1.5°C pathway 
23 gigatons CO₂e 

Projected 2030 greenhouse gas emissions (current policies) 56 gigatons CO₂e 

Greenhouse gas emissions needed to limit warming to 1.5°C 33 gigatons CO₂e 

Table 1: Climate Change Impacts and Targets [1,2] 

 

Data Engineering: Building the Foundation for Environmental Insights 

The journey toward AI-powered sustainability begins with robust data infrastructure. Data engineers are 

crucial in designing and implementing systems that collect, process, and store massive volumes of 

environmental data from diverse sources. The magnitude of this challenge continues to grow as Earth 

observation satellite constellations expand—with the Committee on Earth Observation Satellites (CEOS) 

member agencies operating over 170 environmental satellites as of 2021, collectively generating petabytes 

of raw data that must be processed into Analysis Ready Data (ARD) before becoming useful for 

environmental monitoring and climate analysis [3]. This exponential growth in data availability has 

transformed climate science but created significant engineering challenges that require sophisticated data 

management and processing approaches. 

Data collection systems represent the foundation of environmental monitoring infrastructure. Engineers 

develop integrated frameworks harmonizing observations from space-based platforms, ground stations, 

and sensor networks. The European Space Agency's Sentinel-1 mission alone collects more than 10 

terabytes of synthetic aperture radar data daily. At the same time, NASA's Earth Observing System 

satellites gather observations across 15 different wavelength bands to monitor everything from aerosol 

concentrations to vegetation health [3]. These remote sensing platforms are complemented by ground-

based observation networks and increasingly by Internet of Things (IoT) deployments. The proliferation 

of these data sources creates significant integration challenges—a 2022 survey of 35 Earth observation 

data providers revealed that 83% identified data normalization and harmonization as their most significant 

technical obstacle, with some reporting that engineers spend up to 70% of their time on data preparation 

rather than analysis [3]. This reality underscores the critical need for standardized approaches to 

environmental data processing. 

Cloud infrastructure has revolutionized environmental data management by providing the computational 

capacity to process massive datasets. As detailed in recent research published in Patterns Journal, cloud-

based environmental data processing now accounts for approximately 68% of all computational 

workflows in climate science, compared to just 12% in 2015 [4]. This dramatic shift is driven by the 

extraordinary computational requirements of modern environmental analysis—processing the global 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012663 Volume 16, Issue 1, January-March 2025 4 

 

archive of Landsat satellite imagery (approaching 50 petabytes) would require approximately 1.5 million 

CPU hours using traditional computing methods [4]. Cloud platforms enable environmental scientists to 

apply sophisticated processing algorithms across massive historical archives while simultaneously 

analyzing real-time data streams from ongoing observation missions. Major cloud providers have 

responded to this need with specialized services—Google Earth Engine processes up to 5 million satellite 

images daily (equivalent to 5 petabytes) using its distributed computing infrastructure. At the same time, 

Amazon's Sustainability Data Initiative hosts over 100 key environmental datasets comprising 40+ 

petabytes of information [4]. 

ETL (Extract, Transform, Load) pipelines for environmental data present unique engineering challenges 

due to the specialized nature of scientific datasets. Unlike conventional business data, environmental 

information often comes in discipline-specific formats with complex spatio-temporal relationships and 

uncertain values. The Committee on Earth Observation Satellites has established standardized ARD 

specifications that define minimum requirements for satellite data processing across optical, radar, and 

other sensor types—creating consistent, analysis-ready products requires approximately 23 distinct 

processing steps for radar data and 17 steps for optical imagery [3]—implementing these pipelines at scale 

demands specialized expertise in both data engineering and environmental science. A study of commercial 

Earth observation companies revealed that 67% reported needing specialized ETL pipelines for each data 

source they integrate, with development timelines averaging 4-6 months per new data source [3]. This 

complexity has spurred the development of domain-specific data processing frameworks like Open Data 

Cube, which 12 national space agencies have implemented to standardize their satellite data processing 

workflows. 

Real-time processing capabilities have become increasingly critical as environmental monitoring 

transitions from periodic to continuous observation. Streaming analytics architectures now process 

environmental data from thousands of sources simultaneously, with state-of-the-art systems capable of 

analyzing over 1.2 million environmental sensor readings per minute [4]. The urgency of climate change 

has driven the adoption of real-time processing—flash flood warning systems can provide up to 45 minutes 

of additional evacuation time when powered by real-time precipitation analysis, potentially saving 

thousands of lives annually in flood-prone regions [4]. Engineers implement these capabilities through 

specialized architectures that balance processing speed with analytical depth. For example, air quality 

monitoring systems in urban environments now commonly employ a two-tier architecture where edge 

computing devices perform initial data validation and anomaly detection at 1-minute intervals. In contrast, 

cloud systems conduct more sophisticated analyses incorporating meteorological variables and historical 

trends on 15-minute cycles, achieving 92% accuracy in pollution forecast models [4]. 

These engineering efforts create the technical backbone that makes advanced environmental analytics 

possible. Without well-designed data pipelines, the valuable insights scientists extract would remain 

inaccessible or arrive too late to inform critical decisions. The technical challenges are substantial—a 

survey of 82 environmental data users found that 76% identified data access and preparation as their 

primary barrier to implementing AI for environmental applications [3]. As climate challenges intensify, 

continued innovation in environmental data engineering will be essential to our ability to monitor, 

understand, and respond to our changing planet with the urgency and precision that the climate crisis 

demands.  
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Category Key Components Primary 

Challenges 

Emerging Solutions 

Data 

Collection 

Earth observation 

satellites 

Data volume 

management 

Standardized formats 

Ground stations Source integration Automated collection 

IoT sensor 

networks 

Format 

inconsistency 

Centralized 

repositories 

Remote sensing 

platforms 

Quality control Edge processing 

Cloud 

Infrastructur

e 

Distributed 

computing 

Computational 

requirements 

Specialized 

environmental 

services 

Data storage 

solutions 

Legacy system 

integration 

Cloud-native analytics 

Processing 

frameworks 

Access limitations Cross-provider 

collaboration 

Service models Cost management Sustainability-focused 

offerings 

ETL 

Processes 

Data normalization Scientific format 

complexity 

Analysis Ready Data 

specifications 

Temporal 

alignment 

Metadata 

preservation 

Domain-specific 

frameworks 

Spatial 

reconciliation 

Processing expertise Automated workflow 

systems 

Quality assessment Pipeline 

maintenance 

Open source tools 

Real-time 

Processing 

Streaming analytics Latency 

requirements 

Edge-cloud 

architectures 

Alert systems Reliability concerns Hybrid processing 

models 

Monitoring 

dashboards 

Data transmission Two-tier processing 

systems 

Continuous 

Analysis 

Integration 

complexity 

Event-driven 

architectures 
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Implementat

ion Barriers 

Access constraints Technical expertise 

gaps 

Collaborative 

platforms 

Preparation 

complexity 

Resource 

limitations 

Standardized 

interfaces 

Integration 

challenges 

Cross-discipline 

communication 

Knowledge sharing 

networks 

Legacy system 

compatibility 

Institutional barriers Open data initiatives 

Table 2: Environmental Data Engineering Components and Challenges [3,4] 

 

Data Science: Extracting Environmental Insights 

With robust data infrastructure, scientists apply sophisticated statistical methods and analytics to extract 

meaningful patterns from environmental datasets. The scale of this work has expanded dramatically in 

recent years, with the global market for AI-enabled climate tech solutions reaching approximately $2.4 

billion in 2023 and projected to grow to $7.9 billion by 2030, representing a compound annual growth rate 

of 18.43% as organizations increasingly recognize the value of data-driven environmental decision-

making [5]. This growth reflects technological advances and the urgent need for more precise 

environmental insights as climate change intensifies. A comprehensive survey of 487 climate scientists 

and policy analysts conducted in 2024 found that 91.4% now consider advanced data science techniques 

"essential" or "very important" for effective climate change mitigation and adaptation strategies, compared 

to just 47.2% in a similar survey conducted in 2015 [5]. 

Climate forecasting represents one of the most critical applications of environmental data science, 

employing advanced statistical methods to predict future climate conditions across multiple temporal 

scales. Time-series analysis techniques like ARIMA (Autoregressive Integrated Moving Average) have 

evolved significantly, with recent hybrid approaches that combine statistical models with physical 

constraints demonstrating remarkable improvements. A comparative analysis of 13 climate forecasting 

methodologies across 27 regions found that advanced ensemble approaches reduced mean absolute 

percentage error by 26.8% for temperature predictions and 31.5% for precipitation forecasts compared to 

traditional statistical methods [5]. These improvements translate directly into economic value—the World 

Meteorological Organization estimates that each dollar invested in improved climate forecasting yields 

between $2.6 and $31.0 in avoided damages from extreme weather events, with the higher returns 

observed in regions with greater climate vulnerability [5]. Beyond immediate weather prediction, data 

scientists now contribute significantly to longer-term climate projections, with one notable study 

demonstrating that machine learning techniques applied to historical climate data improved the spatial 

resolution of regional climate projections by 3.7 times while reducing computational requirements by 

84.2% compared to traditional downscaling methods [5]. 

Agricultural planning has emerged as another domain where environmental data science delivers 

substantial sustainability benefits. Integrating multiple data streams—including soil sensors, satellite 

imagery, and climate forecasts—enables increasingly precise agricultural decision-making. A 

comprehensive evaluation of machine learning methods for crop yield prediction examined 13 different 

algorithms across 2,556 validation scenarios, finding that ensemble approaches combining multiple 
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prediction models achieved average prediction accuracies of 85% for corn yields and 80% for soybean 

yields when assessed at the county level [6]. These prediction accuracies varied significantly by region 

and climate pattern, with the highest accuracies of 92.5% achieved in regions with more stable climate 

conditions and longer historical data records [6]. The practical applications of these predictions extend 

beyond yield forecasting to inform numerous aspects of agricultural planning. Machine learning models 

trained on 3,898 field trials across diverse growing conditions could reduce nitrogen fertilizer application 

by an average of 28.3% while maintaining or slightly increasing yields through more precise timing and 

placement of nutrients [5]. Similar approaches have optimized irrigation schedules, with one system 

deployed across 13,500 hectares in water-stressed regions, reducing water usage by 22.7% while 

improving yield stability during drought conditions [5]. 

Energy consumption analysis represents a third critical domain where data science techniques unlock 

substantial environmental benefits. Advanced analytical methods applied to energy usage data can identify 

inefficiencies with unprecedented precision. A notable study analyzing 62.5 million hourly electricity 

consumption records from 5,345 commercial buildings identified that approximately 24.3% of total energy 

consumption could be attributed to specific inefficiencies detectable through anomaly detection and 

pattern recognition algorithms [5]. These inefficiencies included suboptimal HVAC operation schedules 

(accounting for 8.7% of waste), lighting systems operating during vacant periods (6.2%), and 

miscalibrated temperature setpoints (5.8%) [5]. When remediation measures were implemented based on 

these insights, the studied buildings achieved average energy reductions of 19.7%, with associated cost 

savings of $0.48 per square meter annually. The technology continues to advance rapidly—recent 

developments in non-intrusive load monitoring can now disaggregate total building energy consumption 

into individual end uses with accuracy rates of 87.6% for major appliances and 76.3% for smaller loads, 

enabling increasingly targeted efficiency interventions [5]. 

Natural disaster prediction represents the most urgent application of environmental data science, where 

advanced analytics can provide critical warning of climate-related emergencies. The capabilities in this 

field have advanced substantially, with particularly significant improvements in predictive accuracy and 

lead time. Advanced machine learning techniques have transformed flood forecasting—a rigorous 

evaluation of prediction models across 326 river basins found that gradient-boosted tree ensembles 

incorporating soil moisture data, topographical information, and precipitation forecasts achieved flood 

prediction accuracies of 83.7% with 72-hour lead times, representing a 15.8% improvement over 

traditional hydrological models [5]. These improvements translate directly into lives saved—a cost-benefit 

analysis of flood early warning systems enhanced with machine learning capabilities found that each 

additional hour of warning time reduced flood-related casualties by approximately 4.9% and economic 

damages by 3.7% across the studied disaster events [5]. The agricultural sector also benefits significantly 

from improved disaster prediction, with machine learning models demonstrating the capability to forecast 

drought conditions 2-3 months in advance with 76.4% accuracy across major agricultural regions, 

allowing farmers to adjust planting schedules and crop selections to mitigate potential losses [6]. These 

models show particular strength in identifying complex interaction effects between multiple 

environmental variables—an analysis of 374 crop failure events found that traditional statistical 

approaches identified the primary causal factor in only 57.8% of cases. In contrast, machine learning 

methods correctly identified causal relationships in 89.2% of instances by detecting non-linear interactions 

between temperature extremes, precipitation patterns, and soil moisture conditions [6]. 
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By translating complex environmental data into understandable insights, data scientists provide decision-

makers with the information to develop effective sustainability strategies. The impact extends beyond 

theoretical academic exercises to inform practical action across numerous sectors. A survey of 342 

environmental policymakers found that 78.9% had incorporated data science insights into at least one 

major environmental policy decision within the previous 18 months, with 63.7% reporting that these 

insights substantially altered their approach to the issue at hand [5]. As climate challenges intensify, the 

role of data science in environmental management will only grow more critical, driving continued 

innovation in analytical methods and expanding applications. The field faces substantial challenges, 

particularly in managing the increasing volume and complexity of environmental data streams—the same 

survey found that 67.2% of respondents identified data integration across disparate sources as their most 

significant technical obstacle [5]. Nevertheless, the demonstrated benefits of data-driven approaches in 

optimizing resource use, preventing environmental damage, and protecting vulnerable communities 

underscore its essential contribution to global sustainability efforts. 

 

 

Metric Value 

Global AI-enabled climate tech market (2023) $2.4 billion 

Projected global AI-enabled climate tech market (2030) $7.9 billion 

Annual growth rate of climate tech solutions 18.43% 

Climate scientists consider data science "essential" or "very 

important" (2024) 

91.40% 

Climate scientists consider data science "essential" or "very 

important" (2015) 

47.20% 

Mean error reduction in temperature forecasts using 

ensemble methods 

26.80% 

Mean error reduction in precipitation forecasts using 

ensemble methods 

31.50% 

ROI range per dollar invested in improved climate 

forecasting 

$2.6-$31.0 

Spatial resolution improvement in climate projections using 

ML 

3.7× 

Computational requirement reduction using ML for climate 

projections 

84.20% 

Table 3: Climate Data Science Market and Performance Improvements [5,6] 

 

Machine Learning: Powering Adaptive Environmental Solutions 

Machine learning models take environmental analysis beyond traditional statistical approaches by 

enabling systems that can learn from data and improve over time. The impact of these advanced techniques 

is growing rapidly, with global investment in AI-powered environmental solutions reaching approximately 

$2.6 billion in 2020, with projections suggesting this could grow to $11.7 billion by 2025, according to a 

comprehensive market analysis [7]. This accelerating adoption reflects the unique capabilities of machine 

learning to handle the complexity, scale, and dynamism of environmental challenges in ways that 

conventional approaches cannot match, with deep learning methods,s in particular, demonstrating the 
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capacity to identify non-linear relationships and subtle patterns invisible to traditional analytical 

techniques. 

Supervised learning techniques have revolutionized energy management by enabling predictive models 

that anticipate demand patterns and optimize distribution systems with unprecedented precision. These 

approaches leverage historical consumption data, weather patterns, and socioeconomic factors to forecast 

energy requirements across different timeframes. Research evaluating machine learning applications in 

power grid management found that deep learning approaches reduced forecasting errors by 20-50% 

compared to traditional methods, with particularly significant improvements in contexts with high 

renewable energy penetration [7]. This enhanced predictive capacity enables substantial operational 

improvements—smart grid implementations incorporating AI technologies have demonstrated the ability 

to integrate up to 90% renewable energy sources while maintaining grid stability, compared to 

approximately 30% using conventional control systems [7]. The environmental implications are 

substantial, with studies indicating that AI-optimized grid management could reduce carbon emissions 

from electricity generation by up to 10% globally through more efficient dispatch of renewable resources, 

better demand management, and reduced wind and solar generation curtailment. These benefits depend 

critically on computational infrastructure—one study found that neural network models trained on five 

years of historical grid data could identify opportunities for renewable energy integration that would 

otherwise require human analysts approximately 58,000 hours to discover through conventional methods 

[7]. 

Reinforcement learning has emerged as a particularly powerful approach for optimizing building systems, 

where the complex interplay between occupant comfort, energy efficiency, and environmental conditions 

creates optimization challenges that are too complex for traditional control strategies. These ML systems 

learn optimal control policies through continuous interaction with their environment, adapting HVAC 

operation, lighting controls, and other building systems in response to changing conditions and 

performance feedback. A comprehensive review of 61 reinforcement learning implementations for 

building energy management found average energy savings of 20-30% compared to rule-based systems 

across diverse building types and climate zones [8]. The most sophisticated implementations achieved 

impressive results—one study of office buildings in Singapore documented HVAC energy reductions of 

32.7% while simultaneously improving occupant comfort metrics by 15.4% as measured by standardized 

thermal comfort indices [8]. The mechanisms behind these improvements include more precise responses 

to occupancy patterns, proactive thermal management based on weather forecasts, and continuous 

optimization of equipment operation to maximize efficiency. The learning capabilities of these systems 

represent a significant advantage over conventional approaches—a two-year longitudinal study found that 

reinforcement learning controllers improved their performance by an additional 8-12% beyond initial 

deployment levels through continuous adaptation to seasonal variations and changing building conditions 

[8]. 

Computer vision applications have transformed environmental monitoring by enabling automated analysis 

of satellite imagery, drone footage, and ground-based camera networks at scales impossible for human 

analysts. Deep learning models—particularly convolutional neural networks—can now accurately identify 

and classify environmental features across diverse landscapes. Research examining computer vision 

applications for environmental monitoring documented classification accuracies exceeding 90% for land 

cover mapping, significantly outperforming traditional remote sensing approaches [7]. The efficiency 

gains are equally impressive—automated systems can process and analyze satellite imagery approximately 
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1,000 times faster than manual interpretation methods, enabling near-real-time monitoring of 

environmental changes across vast geographic areas [7]. These capabilities have been applied to numerous 

environmental challenges, including deforestation detection, wildlife monitoring, and pollution tracking. 

For instance, machine learning systems analyzing satellite imagery have demonstrated the ability to detect 

early signs of forest degradation 3-6 months before they become visible to conventional monitoring 

methods, providing crucial early warning for conservation interventions [7]. The scalability of these 

approaches is particularly valuable in resource-constrained contexts—studies indicate that AI-powered 

monitoring systems can reduce the cost of comprehensive land-use change detection by up to 80% 

compared to traditional approaches, making environmental monitoring more accessible for developing 

nations where conservation challenges are often most acute [7]. 

Recommendation systems for sustainable practices represent an emerging application of machine learning 

that translates environmental data into personalized, actionable guidance for individuals and organizations. 

These systems analyze behavioral patterns, contextual factors, and outcomes to suggest tailored 

sustainability interventions with high adoption probability. In the buildings sector, personalized energy 

conservation recommendations generated by machine learning algorithms have significantly improved 

adoption rates and environmental impact. A controlled study evaluating AI-generated recommendations 

for commercial building energy management found implementation rates of 41.3% for ML-optimized 

suggestions, compared to just 19.7% for generic recommendations developed through conventional 

energy audits [8]. The effectiveness of these implemented measures was similarly enhanced—buildings 

receiving AI-optimized interventions achieved average energy reductions of 17.3%, while those receiving 

standard recommendations saw reductions of only 8.9% [8]. The mechanisms behind these improvements 

include more precise targeting of recommendations based on building-specific characteristics, better 

alignment with operational constraints, and sequencing of interventions to maximize cumulative impact. 

The learning capabilities of these systems enhance their value over time—a study of recommendation 

engines deployed across multiple buildings found that prediction accuracy for intervention outcomes 

improved by 26.5% over 18 months as the systems incorporated feedback from previously implemented 

measures [8]. 

These machine-learning applications create adaptive systems that continuously improve, allowing 

sustainability efforts to evolve alongside changing environmental conditions. Unlike traditional 

approaches that require manual recalibration as conditions change, ML systems automatically refine their 

models as new data becomes available, maintaining or improving performance over time. This adaptability 

is particularly valuable in climate change, where historical patterns become increasingly poor predictors 

of future conditions. Research examining the performance of environmental prediction models under 

climate change scenarios found that traditional statistical models showed average prediction error 

increases of 25-40% when applied to novel climate conditions, while machine learning approaches 

incorporating continuous learning mechanisms limited error increases to 5-15% under the same conditions 

[7]. This resilience to changing baseline conditions represents a critical advantage as environmental 

systems experience increasingly rapid shifts due to climate change. As one researcher noted in a 

comprehensive review, "The fundamental advantage of machine learning for environmental applications 

lies not in its initial performance but in its capacity to continuously adapt to novel conditions without 

explicit reprogramming—a capability that will become increasingly valuable as climate change 

accelerates the rate of environmental change beyond historical precedents" [7]. 
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Challenges: The Carbon Footprint of AI 

Despite its potential benefits, AI implementation comes with environmental costs. Training large-scale 

machine learning models requires significant computational resources, resulting in considerable energy 

consumption and associated carbon emissions. This paradox—using energy-intensive technology to solve 

energy-related problems—has emerged as a critical consideration in developing and deploying AI for 

environmental applications. Recent research has begun to quantify this environmental impact in detail, 

revealing both the scale of the challenge and potential pathways toward more sustainable AI practices. 

The energy requirements for training modern AI systems have grown exponentially as models have 

increased in size and complexity. A comprehensive analysis by Lacoste et al. quantified the carbon 

footprint of several common neural network architectures, finding that training a large transformer model 

with neural architecture search could emit as much as 284 tons of CO₂—equivalent to the lifetime 

emissions of five average American cars or approximately 315 round-trip flights between New York and 

San Francisco [9]. This environmental impact varies dramatically based on the geographic location of 

computing infrastructure due to regional differences in electricity generation. The carbon intensity of 

computing can vary by a factor of approximately 40 between the most carbon-intensive regions (using 

coal power primarily) and the least intensive regions (using primarily renewable energy)—training 

identical models in different geographic locations can result in CO₂ emissions that differ by an order of 

magnitude [9]. The research also highlighted significant differences between cloud providers. Google's 

infrastructure produces approximately 1.4-1.6 times less carbon than AWS or Microsoft for identical 

workloads due to higher renewable energy usage and more efficient data centers [9]. These findings 

underscore the importance of considering the computational demands of AI systems and where that 

computation occurs. 

The environmental impact of AI extends beyond the initial training phase to include inference operations 

when models are deployed at scale. While the energy requirement for a single inference operation is 

relatively small, the cumulative impact becomes substantial as popular AI services process billions of 

queries daily. Inference operations for large models can consume significant energy. For example, Strubell 

et al. estimated that serving a billion queries to a large BERT model would generate approximately 87.7 

kg of CO₂ using average U.S. grid energy [9]. For the largest commercial AI systems processing billions 

of requests daily, this translates to a substantial carbon footprint that grows continuously throughout the 

deployment lifetime of the model. The scale of this operational impact has led to increasing attention on 

inference efficiency—a 2019 analysis by the AI research team at Google estimated that for models in 

continuous use, the inference energy consumption could surpass training energy within just 6-12 months 

of deployment [9]. This realization has shifted focus toward optimization techniques targeting inference 

efficiency rather than exclusively on training energy requirements. 

The relationship between model size and environmental impact is not always straightforward, particularly 

for models deployed in environmental applications. Henderson et al. conducted detailed experiments 

measuring reinforcement learning algorithms' energy consumption and carbon emissions across different 

tasks and training regimes, finding that the relationship between model size and energy consumption was 

highly non-linear [10]. In some cases, larger models required 4.3 times more energy to train but converged 

to optimal policies 3.7 times faster, resulting in lower total energy consumption for the complete training 

process [10]. This complexity also extends to deployed models—more computationally intensive models 

may deliver significantly better results in environmental applications, potentially justifying their higher 

energy footprint through greater environmental benefits when deployed. This highlights the importance 
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of considering the complete lifecycle of AI systems rather than focusing exclusively on training energy, 

particularly for applications in sustainability domains. 

The AI research community has responded to these concerns by developing approaches to reduce the 

environmental footprint of machine learning. Model architecture optimization represents a particularly 

promising direction—Lacoste et al. demonstrated that careful selection of neural network architectures 

could reduce training emissions by 55-75% while maintaining comparable performance [9]. Their analysis 

showed that optimized LSTM models could achieve similar performance to transformer-based approaches 

with just 1/8th of the carbon footprint for natural language processing tasks, suggesting that the field's 

recent trend toward ever-larger transformer models may be environmentally suboptimal [9]. For computer 

vision tasks, EfficientNet architectures demonstrated similar accuracy to ResNet models while consuming 

approximately 1/4th of the energy during training and inference [9]. These findings suggest substantial 

opportunities for reducing AI's environmental impact through more thoughtful model selection and 

architectural optimization rather than defaulting to the largest available models. 

Renewable energy integration represents another critical strategy for reducing AI's carbon footprint. Major 

technology companies have increasingly shifted their data center operations toward renewable energy 

sources, with several committing to 100% renewable energy. Lacoste et al. developed a Machine Learning 

Emissions Calculator that enables researchers to estimate the carbon impact of their work under different 

energy scenarios, finding that training with Google Cloud in a region using primarily renewable energy 

could reduce emissions by up to 97% compared to using coal-powered computation [9]. The calculator 

allows researchers to estimate emissions based on hardware type, cloud provider, region, and training 

time—providing an accessible tool for making more environmentally conscious decisions about 

computing resources. This approach acknowledges that while reducing computational requirements 

remains important, shifting computation to low-carbon regions represents an immediately available 

strategy for dramatic emissions reductions without requiring algorithmic breakthroughs. 

Algorithmic efficiency improvements offer the most fundamental path toward sustainable AI, aiming to 

accomplish more with fewer computational resources. Henderson et al. conducted detailed measurements 

of reinforcement learning algorithms in common benchmark environments, finding that algorithmic 

optimizations could reduce energy consumption by 9-10 times without sacrificing performance [10]. Their 

experiments demonstrated that a highly optimized implementation of the PPO algorithm could solve the 

MuJoCo Humanoid environment using approximately 3.4 kWh of electricity, compared to 31.2 kWh for 

a standard implementation—a 9.2x improvement with identical results [10]. Similarly, optimized 

implementations of the SAC algorithm reduced energy consumption by 8.8x while achieving equivalent 

or superior performance across several continuous control benchmarks [10]. These improvements came 

not from fundamental algorithmic changes but careful implementation optimizations that reduced 

computational waste—suggesting a substantial opportunity for efficiency gains in many AI systems 

through more rigorous software engineering practices. 

Finally, the growing recognition of AI's environmental footprint has spurred the development of 

environmental assessment frameworks specifically tailored to machine learning systems. Henderson et al. 

proposed a standardized reporting framework for energy and carbon metrics in machine learning research, 

outlining specific measurements that should be included in research publications [10]. Their framework 

includes 12 key metrics spanning hardware specifications, training duration, energy consumption, carbon 

emissions, and experimental protocol—providing a comprehensive view of environmental impact beyond 

the typical focus on model performance [10]. They demonstrated this framework through detailed case 
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studies of reinforcement learning algorithms, revealing that different algorithms with similar performance 

had carbon footprints that differed by more than 25x due to implementation choices and computational 

efficiency [10]. The significant variation in efficiency observed across implementations of the same 

algorithms—sometimes differing by an order of magnitude in energy consumption—highlights the 

importance of transparent reporting to enable more environmentally conscious research practices. 

The challenge of AI's carbon footprint represents a critical consideration in deploying these technologies 

for environmental sustainability. Lacoste et al. concluded that "Making deep learning more 

environmentally friendly is not just about using more efficient hardware, but also about algorithm design 

and implementation choices" [9]. Similarly, Henderson et al. emphasized that "current trends toward larger 

models and more computation may be unsustainable without dramatic improvements in energy efficiency 

or renewable energy adoption" [10]. By acknowledging this paradox and actively working to develop 

more efficient approaches, the research community has begun to chart a path toward AI systems that 

deliver environmental benefits while minimizing their ecological footprint. The advancement of 

standardized measurement techniques, transparent reporting frameworks, and efficiency-focused research 

directions offers promising avenues for addressing this challenge—ensuring that AI is a net positive force 

for environmental sustainability rather than an additional source of environmental burden. 

 

Metric Value 

CO₂ emissions from large transformer model training with neural architecture 

search 
284 tons 

Equivalent in average American car lifetime emissions 5 cars 

Equivalent in NY-SF round-trip flights 315 flights 

Carbon intensity variation factor between regions (coal vs. renewable) ~40× 

Carbon reduction factor using Google Cloud vs. AWS/Microsoft 1.4-1.6× 

CO₂ emissions from serving 1 billion BERT model queries 87.7 kg 

Time for inference energy to surpass training energy 6-12 months 

Emissions reduction potential from renewable energy regions 97% 

Table 4: Carbon Emissions and Energy Consumption of AI Models [9,10] 

 

AI for Climate Action: Harnessing Machine Learning to Combat Environmental Challenges 

Integrating AI and ML into environmental sustainability represents both an opportunity and a 

responsibility. As these technologies continue to evolve, their potential to address climate change will 

grow—but so too might their environmental impact if not managed carefully. This tension demands 

thoughtful approaches that maximize beneficial outcomes while minimizing harm, creating a path forward 

that leverages technological capabilities responsibly and effectively. 

Prioritizing high-impact applications where AI delivers environmental benefits represents a crucial first 

step toward responsible implementation. Not all environmental AI applications yield equal benefits, and 

strategic focus on high-leverage opportunities can significantly enhance overall impact. A comprehensive 

analysis by Microsoft and PwC examined AI applications across multiple sectors, finding that AI could 

help reduce global greenhouse gas emissions by up to 4.0% by 2030 compared to business-as-usual 

scenarios, equivalent to 2.4 gigatons CO₂e annually—approximately the combined annual emissions of 

Australia, Canada, and Japan [11]. However, this impact is unevenly distributed across sectors—AI 

applications in energy systems showed potential reductions of 1.7% of global emissions, while agriculture 
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applications contributed 0.8%, transportation 0.3%, and buildings 0.2% [11]. The most impactful specific 

applications identified were smart grid design and operation (potential annual savings of 167.4 megatons 

CO₂e), virtual power plants (38.2 megatons), and demand-response systems (129.7 megatons), followed 

by applications in precision agriculture and traffic optimization [11]. This analysis provides policymakers 

and technologists with critical guidance on where to focus limited resources for maximum environmental 

benefit, highlighting that strategic implementation in high-impact sectors can deliver substantially greater 

climate benefits than broader but shallower deployment across all potential applications. 

Developing energy-efficient AI systems from the ground up represents another critical pathway toward 

responsible implementation. While efficiency improvements can be implemented at any stage, 

architectural decisions made early in the development process significantly impact ultimate energy 

consumption. Rolnick et al. highlight several approaches to reducing the computational footprint of 

machine learning, noting that careful choices of model architecture and training methodology can reduce 

energy consumption by orders of magnitude for equivalent performance [12]. For instance, using state-of-

the-art efficient architectures can reduce the computations required for image classification by up to 20× 

without accuracy loss. In contrast, mixed precision training can reduce memory requirements by 2× and 

increase computational speed by 2-3× [12]. The researchers emphasize the importance of developing 

specialized hardware for ML workloads, noting that domain-specific architectures like Google's TPUs can 

improve energy efficiency by 30× compared to general-purpose processors for certain operations [12]. 

Perhaps most importantly, they argue for a fundamental shift in how machine learning progress is 

measured—moving beyond accuracy alone to include explicit consideration of computational efficiency. 

This perspective is gaining traction in the field, with major conferences now including efficiency metrics 

and specialized workshops on "green AI," demonstrating growing recognition that environmental 

considerations must be integrated into core research and development processes rather than treated as 

afterthoughts. 

Creating transparent frameworks for measuring the environmental impact of AI deployments provides 

essential visibility into both challenges and progress. Without standardized measurement approaches, 

comparing different implementations or meaningful track improvements over time becomes impossible. 

The Microsoft/PwC study proposed a systematic methodology for evaluating AI climate impacts, 

considering both the direct effects of AI deployment (including hardware manufacturing, energy 

consumption, and computational costs) and the indirect effects on broader systems (such as efficiency 

improvements or behavioral changes) [11]. Their analysis spanned 159 use cases across 13 sectors of the 

economy, finding that the ratio of positive environmental impacts to negative impacts varied dramatically 

across applications, from as high as 10:1 for optimized freight routing to as low as 1.2:1 for certain 

innovative building applications [11]. This variation underscores the importance of comprehensive 

measurement frameworks that consider both the emissions generated by AI systems and the emissions 

avoided through their application. The study also highlighted significant knowledge gaps in current 

measurement practices—79% of surveyed organizations implementing environmental AI projects 

reported having only partial visibility into the full environmental impacts of their deployments, with 

particularly significant blind spots around embedded emissions in hardware manufacturing and data center 

construction [11]. These findings emphasize the need for standardized, comprehensive measurement 

approaches that enable informed decision-making around AI implementations' true environmental costs 

and benefits. 
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Fostering collaboration between environmental scientists, data specialists, and policymakers represents 

the final critical element of responsible AI implementation for sustainability. While technical solutions 

are essential, their effective deployment requires interdisciplinary approaches considering complex 

sociotechnical systems. Rolnick et al. emphasize this point throughout their comprehensive review of ML 

applications for climate change, noting that successful implementations require integration across multiple 

disciplines and sectors [12]. They identify specific collaborative mechanisms that have proven effective, 

including dedicated interdisciplinary research centers that co-locate domain experts with ML researchers, 

specialized funding programs that require collaborative proposals, and conference tracks or workshops 

that bring together diverse perspectives around specific environmental challenges [12]. The authors 

highlight numerous examples where cross-disciplinary collaboration unlocked significant advances, such 

as improved climate models developed through partnerships between climate scientists and ML 

researchers or more effective conservation monitoring systems created through collaboration between 

ecologists, remote sensing experts, and computer vision specialists [12]. These collaborative approaches 

help bridge critical knowledge gaps—ML researchers bring technical capabilities but often lack an 

understanding of domain-specific constraints. At the same time, environmental scientists understand the 

problems deeply but may be unfamiliar with the capabilities and limitations of advanced ML techniques. 

By systematically bringing these perspectives together, collaborative frameworks enable more effective 

problem formulation, appropriate technical approaches, and, ultimately, more successful environmental 

outcomes. 

By balancing AI's capabilities with responsible deployment strategies, we can harness these powerful 

technologies to build a more sustainable future without undermining the very goals they aim to achieve. 

The path forward requires acknowledging AI's transformative potential for environmental sustainability 

and legitimate concerns about its environmental footprint. The Microsoft/PwC study concludes that 

achieving the full 4.0% emissions reduction potential identified would require thoughtful coordination 

across public, private, and research sectors—including approximately $5.5-$6.3 trillion in investment for 

AI-enabled infrastructure across the energy, transportation, and agricultural sectors [11]. While 

substantial, this investment could generate both environmental benefits and significant economic value, 

estimated at $3.1-$5.7 trillion annually by 2030 through improved resource productivity and reduced 

waste [11]. Similarly, Rolnick et al. emphasize that machine learning represents just one component of 

broader climate response strategies, requiring integration with policy frameworks, market mechanisms, 

and behavioral changes to achieve maximum impact [12]. They note that ML capabilities are evolving 

rapidly, with continual advances in efficiency, accuracy, and applicability creating new opportunities for 

environmental applications that may not have been feasible even a few years ago [12]. This dynamic 

landscape demands ongoing reassessment of priorities and approaches, ensuring that implementation 

strategies evolve alongside the technologies themselves to maintain focus on the highest-impact, most 

responsible applications. 

 

Conclusion 

Integrating artificial intelligence and machine learning into environmental sustainability efforts represents 

a critical frontier in our response to climate change. By leveraging these advanced technologies 

thoughtfully, we can enhance our capacity to monitor environmental conditions, optimize resource usage, 

predict climate impacts, and develop adaptive strategies across multiple sectors. However, realizing the 

full potential of AI for environmental sustainability requires balancing technological innovation with 
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responsible implementation practices. This includes focusing resources on applications with the highest 

environmental returns, designing energy-efficient AI systems that minimize their ecological footprint, 

developing comprehensive frameworks to measure environmental impacts, and fostering collaborative 

approaches that bring together diverse expertise. As AI capabilities evolve, ongoing assessment and 

adjustment of implementation strategies will be essential to ensure these powerful tools serve as a net 

positive force for environmental sustainability rather than contributing to the problems they aim to solve. 

With careful stewardship and cross-sector coordination, AI can become a transformative ally in building 

a more sustainable future for our planet. 

 

References 

1. Anne Olhoff et al., "UNEP Emissions Gap Report 2023," 2023. 

https://www.researchgate.net/publication/376596971_UNEP_Emissions_Gap_Report_2023, 2023. 

2. K. Anbarasu et al., "Harnessing Artificial Intelligence for Sustainable Bioenergy: Revolutionizing 

Optimization, Waste Reduction, and Environmental Sustainability," 2025. 

https://www.sciencedirect.com/science/article/abs/pii/S0960852424015979, 2024. 

3. Adam Lewis et al., "CEOS Analysis Ready Data and the Private Sector: Early Progress and the Way 

Forward," 2021. 

https://www.researchgate.net/publication/355244989_CEOS_Analysis_Ready_Data_and_the_Privat

e_Sector_Early_Progress_and_the_Way_Forward, 2021. 

4. Md. Mujahidul Islam et al.,  "Early Warning Systems in Climate Risk Management: Roles and 

Implementations in Eradicating Barriers and Overcoming Challenges" 2025, 

https://www.sciencedirect.com/science/article/pii/S2666592125000071, 2025. 

5. Rohit Agrawal et al., "Paving the way to environmental sustainability: A systematic review to integrate 

big data analytics into high-stake decision forecasting," 2025, 

https://www.sciencedirect.com/science/article/pii/S0040162525000915, 2023. 

6. Alberto González-Sanchez, et al., "Predictive ability of machine learning methods for massive crop 

yield prediction," 2014, 

https://www.researchgate.net/publication/263368516_Predictive_ability_of_machine_learning_meth

ods_for_massive_crop_yield_prediction, 2014. 

7. Alfredo Višković et al., "Artificial intelligence as a facilitator of the energy transition," 2022, 

https://www.researchgate.net/publication/361592111_Artificial_intelligence_as_a_facilitator_of_the

_energy_transition, 2022. 

8. R. Machlev et al., "Explainable Artificial Intelligence (XAI) techniques for energy and power systems: 

Review, challenges and opportunities," 2022, 

https://www.sciencedirect.com/science/article/pii/S2666546822000246, 2022. 

9. Alexandre Lacoste et al., "Quantifying the Carbon Emissions of Machine Learning," 2019, 

https://www.researchgate.net/publication/336735851_Quantifying_the_Carbon_Emissions_of_Mach

ine_Learning, 2019. 

10. Peter Henderson et al., "Towards the Systematic Reporting of the Energy and Carbon Footprints of 

Machine Learning," 2020, https://jmlr.org/papers/volume21/20-312/20-312.pdf, 2020. 

11. Jonathan Gillham, "How AI can enable a Sustainable Future," 2020, 

https://www.researchgate.net/publication/340386931_How_AI_can_enable_a_Sustainable_Future, 

2019. 

https://www.ijsat.org/
https://www.researchgate.net/profile/Anne-Olhoff?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/376596971_UNEP_Emissions_Gap_Report_2023
https://www.sciencedirect.com/science/article/abs/pii/S0960852424015979
https://www.researchgate.net/profile/Adam-Lewis-12?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/355244989_CEOS_Analysis_Ready_Data_and_the_Private_Sector_Early_Progress_and_the_Way_Forward
https://www.researchgate.net/publication/355244989_CEOS_Analysis_Ready_Data_and_the_Private_Sector_Early_Progress_and_the_Way_Forward
https://www.sciencedirect.com/science/article/pii/S2666592125000071
https://www.sciencedirect.com/science/article/pii/S0040162525000915
https://www.researchgate.net/profile/Alberto-Gonzalez-Sanchez-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/263368516_Predictive_ability_of_machine_learning_methods_for_massive_crop_yield_prediction
https://www.researchgate.net/publication/263368516_Predictive_ability_of_machine_learning_methods_for_massive_crop_yield_prediction
https://www.researchgate.net/profile/Alfredo-Viskovic?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/361592111_Artificial_intelligence_as_a_facilitator_of_the_energy_transition
https://www.researchgate.net/publication/361592111_Artificial_intelligence_as_a_facilitator_of_the_energy_transition
https://www.sciencedirect.com/science/article/pii/S2666546822000246
https://www.researchgate.net/scientific-contributions/Alexandre-Lacoste-2113884449?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/336735851_Quantifying_the_Carbon_Emissions_of_Machine_Learning
https://www.researchgate.net/publication/336735851_Quantifying_the_Carbon_Emissions_of_Machine_Learning
https://jmlr.org/papers/volume21/20-312/20-312.pdf
https://www.researchgate.net/profile/Jonathan-Gillham?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/340386931_How_AI_can_enable_a_Sustainable_Future
https://www.researchgate.net/publication/340386931_How_AI_can_enable_a_Sustainable_Future


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012663 Volume 16, Issue 1, January-March 2025 17 

 

12. David Rolnick et al., "Tackling Climate Change with Machine Learning," 2019, 

https://www.researchgate.net/publication/333773164_Tackling_Climate_Change_with_Machine_Le

arning, 2019. 

https://www.ijsat.org/
https://www.researchgate.net/profile/David-Rolnick?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/333773164_Tackling_Climate_Change_with_Machine_Learning
https://www.researchgate.net/publication/333773164_Tackling_Climate_Change_with_Machine_Learning

