
 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 1 

 

Intelligent Test Automation: A Multi-Agent 

LLM Framework for Dynamic Test Case 

Generation and Validation 
 

Pragati Kumari 
 

Abstract 

Automated software testing is essential in modern software development, ensuring stability and resilience. 

This study describes a unique technique for using the capabilities of Large Language Models (LLMs) via 

a system of autonomous agents. These agents collaborate to dynamically generate, validate, and execute 

test cases based on specified requirements [1, 2]. By iteratively improving test cases via agent-to-agent 

communication, the system improves accuracy and effectiveness. Our implementation, which uses 

AutoGen and Python's unittest framework, shows how this method helps to maintain excellent software 

quality. Experimental evaluations across a variety of test scenarios demonstrate the versatility and 

efficiency of our framework, Intelligent Test Automation (ITA), emphasizing its promise for increasing 

automated software testing [3, 4]. 

 

Keywords: Intelligent Test Automation (ITA), Large Language Models (LLMs), Multi-Agent Systems, 

Automated Software Testing, Test Case Generation 

 

1. Introduction 

Software testing is an essential part of software development that guarantees code correctness [5], stability, 

and robustness against regressions. Conventional test case generation methods can be very labor-intensive 

and are unable to cope with evolving requirements [6, 7]. Recent developments in Large Language Models 

(LLMs) have created new avenues for automated test generation [8, 9]. Yet, most current frameworks 

depend on external dependencies, which can add complexity and introduce potential bugs [10, 11]. 

 

In this research, we present Intelligent Test Automation (ITA), a novel multi-agent system that employs 

LLMs to create, verify, and run test cases based purely on provided criteria. ITA guarantees ongoing test 

case optimization and extensive test coverage by enabling dynamic collaboration among autonomous 

agents [12]. This system strives to demystify the software testing process by reducing human effort while 

enhancing flexibility and accuracy due to evolving development needs [13]. 

 

2. Related Work 

Past work in automated test generation has predominantly revolved around static test case generation, 

where typically predefined rules or manual input have been required [14, 15]. External knowledge sources 

are employed by some to augment test generation, but dependence on such leads to potential consistency 

and dependency issues [16]. 

Our strategy stands out in employing several independent agents that cooperatively create, verify, and run 

test cases within an isolated setting [17]. While earlier research has touched on applying Large Language 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 2 

 

Models (LLMs) to generate tests, not many have adopted an agent-based system that repeatedly refines 

test cases for better correctness and responsiveness [18, 19]. By providing dynamic interaction among the 

agents, our ITA framework improves automated software testing's reliability and versatility [20]. 

 

3. Proposed Framework 

The framework, ITA, proposed in this work has three autonomous specialist agents that together produce, 

polish, and validate test cases for extensive software testing. The execution flow of ITA is presented in 

figure 1 and is as follows: 

 Test Case Generation Agent (TCGA): The agent is responsible for extracting requirements from 

the specification document (REQ_SPE.pdf) and creating initial test cases (test_cases.py). It also 

creates a preliminary program (calculator.py) from the given requirements. 

 Test Case Modification Agent (TCMA): After the initial test cases and program are created, 

TCMA fine-tunes the test cases and, if needed, adjusts the program to correct any inconsistencies. 

The revised test cases (modified_test_cases.py) and the modified program 

(modified_calculator.py) are then run to ensure the correctness of the implementation. 

 Test Case Validation Agent (TCVA): TCVA validates the updated test cases and confirms that 

they meet the software requirements. It checks whether the test cases adequately cover the 

anticipated functionality and generates a final validation report certifying the test results. 

 These agents operate in an iterative process, constantly updating the test cases and the program 

until the validation requirements are fulfilled. Automating this process reduces manual 

intervention to a minimum, increases test precision, and increases adaptability to changing 

requirements. 

 
Fig 1:  Execution flow of the proposed framework 

 

 

4. Experimental Setup and Evaluation 

To install ITA, first make sure Python version 3.8 or later is installed and then install using pip. Set up the 

API endpoint by creating environment variables or a JSON file. For the Large Language Model (LLM), 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 3 

 

set parameters such as configuration list, temperature, timeout, and cache seed. For interactions, instantiate 

AssistantAgent and UserProxyAgent. Utilize the Software Tester Agent (STA) to initiate conversations 

and create test cases from the "REQ_SPE.pdf" file. Go ahead and implement the program based on these 

specifications. Run test cases subsequently using Python's unittest module, with the level of verbosity 

changed as necessary. Finish setting up by checking the test cases using the Test Case Validation Agent 

(TCVA) to verify they correctly identify pass or fail situations. 

The framework was tested on several software requirements to show its ability to: 

● Automatically extract requirements from a structured document. 

● Generate appropriate test cases from given requirements only. 

● Iteratively adjust test cases to improve coverage and precision. 

● Dynamically adjust code according to validation feedback. 

● Run and validate test cases automatically. 

High test coverage and adaptability are indicated by results, demonstrating the practical usability of ITA 

in automated software testing. 

 

 
Fig. 2: Flow Diagram of Intelligent Test Automation 

 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 4 

 

 

5. Discussion 

 

The suggested framework has some very important benefits that lead to the efficiency, accuracy, and 

flexibility of software testing in an automated manner. 

● Automated Requirement Processing: The primary goal of this method lies in the fact that it can 

automatically interpret and extract software requirements from specification documents. By 

avoiding the creation of test cases manually, the framework lowers the level of human intervention, 

reduces error rates, and speeds up testing. This automation is especially useful in large projects or 

commonly changing projects where the generation of test cases manually would prove to be time-

consuming and error-ridden. 

● High Adaptability: Contrary to the conventional testing methodologies, which may find it 

challenging to cope with changing software specifications, this methodology utilizes autonomous 

agents that continuously optimize test cases. The agents adaptively examine and modify test cases 

in response to validation outcomes so that they constantly remain in line with the new 

specifications. Such adaptability adds strength to the software testing process, making it especially 

suitable for agile development scenarios. 

● Test Case and Code Refinement:  The model extends basic test generation by having an iterative 

refinement process. The Test Case Modification Agent (TCMA) actively analyzes test cases, 

performing required modifications on both the test scripts and the implementation of the software. 

Through this ongoing process, edge cases are discovered, test accuracy is enhanced, and overall 

software quality is improved, lowering the chance of hidden bugs in production. 

● Comprehensive Execution Flow: The systematic process of execution guarantees that all test 

cases created cover the software's functional requirements comprehensively. Test Case 

Validation Agent (TCVA) is vital in determining the validity and completeness of test cases prior 

to final validation. With the systematic process, gaps in test coverage are reduced, and confidence 

in the reliability of the software is improved. 

 

6. Limitations and Future Work 

Although the framework offers benefits, it does pose certain issues that should be resolved: 

● Computational Overhead: As accuracy is improved through iterative refinement, computational 

overhead increases. Frequent changes in test cases and program code [21] are time- and resource-

consuming processes, which have the potential to affect performance, particularly in mass-scale 

software programs [22]. Future research will aim at streamlining the process by achieving more 

efficient agent coordination and caching intelligence to mitigate redundant computations. 

● Dependence on Initial Requirement Clarity: As the framework is based on requirement 

extraction, errors or vagueness in the specification document can result in poor-quality test cases. 

Increasing the reliability of requirement interpretation—perhaps using more sophisticated natural 

language processing (NLP) methods—would help to overcome this difficulty and enhance the 

quality of test cases produced [23]. 

 

 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 5 

 

● Scalability Considerations: The present framework behaves well in highly controlled test cases, 

but it is yet to be proven for use in realistic, multi-module software systems. Parallelizing 

operations among agents and the integration of the framework within CI/CD pipelines will be 

future work toward achieving scalability and practical applicability [24]. 

 

Overall, the proposed framework provides a fully automated, adaptive, and optimal method of software 

testing, correcting most of the shortcomings of classical approaches. While computational efficiency and 

scalability are the areas that require improvement, the continuous research and optimizations will extend 

its applicability to real-world scenarios [25]. 

 

7. Conclusion 

This work presents a new multi-agent, LLM-based system for automated test generation and execution 

that offers a highly adaptive and efficient method of software testing. Through the use of interactive 

collaboration between autonomous agents, the system ensures higher accuracy in test case generation with 

less human intervention. The iterative refinement process enables ongoing improvements in test coverage 

and software correctness, ultimately leading to increased software reliability. 

The outcomes prove that this method not only simplifies the testing procedure but also maximizes its 

efficacy in dynamic and changing development environments. By minimizing reliance on fixed test case 

generation and outside knowledge bases, the framework creates a more independent and extendable testing 

model. These results point to the potential of multi-agent LLM-based systems in revolutionizing 

conventional software testing methodologies and propelling automation in quality assurance. 

 

Appendix 

A. Experimental Setup and Code Implementation 

This section provides technical details about setting up Intelligent Test Automation using AutoGen, API 

configurations, multi-agent interactions, and automated test execution. 

 

A.1. AutoGen Installation and API Configuration 

● Python Requirement: AutoGen requires Python 3.8 or higher. Install it using:  

pip install autogen  

● Setting API Endpoint:  

o AutoGen loads configurations from an environment variable or a JSON file using 

config_list_from_json(). 

o It first checks the environment variable "OAI_CONFIG_LIST", which must contain a 

valid JSON string. 

o If missing, it searches for a JSON file with the same name. 

o Only GPT-4 models are retained for execution. 

A.2. LLM Configuration Parameters 

 

A dictionary called LLM Config contains several parameters that need to be set for a model, including: 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 6 

 

● config_list → Additional model settings. 

● temperature → Controls randomness in responses. 

● timeout → Maximum wait time for a model response. 

● cache_seed → Used for caching consistency. 

A.3. Multi-Agent Configuration 

The framework defines two agents: 

● AssistantAgent (assistant): Interacts with the user and processes tasks. 

● UserProxyAgent (user_proxy): Handles user input and task management. 

Agent behavior includes: 

● Data input via user_proxy, with a TERMINATE message upon task completion. 

● A maximum of 10 consecutive auto-replies is allowed. 

● The working directory is set to "web" via code_execution_config. 

● Language modeling parameters are configured for both agents. 

A.4. Test Case Generation Process 

● A chat session is initiated. 

● The Software Tester Agent (STA) reads the "REQ_SPE.pdf" file and extracts the 

requirements. 

● A structured prompt is generated for the STA to create test cases. 

● The system automatically saves the test cases in a structured file. 

A.5. Program Development and Execution 

● The AssistantAgent outlines step-by-step actions for developing a program based on 

requirements. 

● The user executes the program and runs test cases using Python’s unittest module. 

● If test cases fail, the system automatically modifies the program and test cases. 

● If all test cases pass, no modification is required. 

A.6. Test Case Validation 

● The Test Case Validation Agent (TCVA) checks the pass/fail status of test cases. 

● If failures occur, the agent suggests modifications. 

B. Full Implementation Code Repository 

For complete implementation details, including the Python implementation of Intelligent Test 

Automation, visit the GitHub repository: 

             ➡ https://github.com/Kumari-Pragati/Intelligent-Test-Automation 

This repository includes: 

https://www.ijsat.org/
https://github.com/Kumari-Pragati/Intelligent-Test-Automation


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 7 

 

● The Python implementation of Intelligent Test Automation. 

● Sample input requirement documents and generated test cases. 

● Automated test execution scripts. 

 

Acknowledgement 

I would like to express my sincere gratitude to Dr. Novarun Deb, Assistant Professor at the University of 

Calgary, Canada for his invaluable guidance and support. I am honored to begin my PhD under his 

supervision at the University of Calgary, Canada. I would also like to acknowledge Dr. Souvick Das, 

Research Associate at Ca' Foscari University, Venice, Italy, for his insightful discussions and continuous 

encouragement in my research journey. Their mentorship and support have been instrumental in shaping 

my academic and research pursuits. 

 

Authors' Biography 

Pragati Kumari received an MTech degree in Information Architect and Software Engineering from 

School of Computer Science & Information Technology, Devi Ahilya Vishwavidyalaya, Indore in 2017. 

She worked as a Project Associate at IIIT Vadodara from Oct 2022 to July 2024, contributing to an ISRO-

sponsored project on Safe Ship Navigation. Additionally, she served as a Teaching Assistant from Jan 

2022 to Dec 2022, assisting in courses related to Software Engineering and Database Management 

Systems. She has been admitted to the PhD program at the University of Calgary, Canada, for the May 

2025 session. Her research interests include software testing automation, requirement engineering, 

artificial intelligence, large language models, and multi-agent systems. She is currently engaged in 

independent research on intelligent test automation using LLMs. 

References 

1. S. C. Allala, J. P. Sotomayor, D. Santiago, T. M. King, and P. J. Clarke, “Towards transforming 

user requirements to test cases using MDE and NLP,” in Proceedings - International Computer 

Software and Applications Conference, IEEE Computer Society, Jul. 2019, pp. 350–355. doi: 

10.1109/COMPSAC.2019.10231. 

2. M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An Empirical Evaluation of Using Large Language 

Models for Automated Unit Test Generation,” Feb. 2023, [Online]. Available: 

http://arxiv.org/abs/2302.06527 

3. J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software Testing With Large 

Language Models: Survey, Landscape, and Vision,” IEEE Transactions on Software Engineering, 

vol. 50, no. 4, pp. 911–936, Apr. 2024, doi: 10.1109/TSE.2024.3368208. 

4. H. Ayenew and M. Wagaw, “Software Test Case Generation Using Natural Language Processing 

(NLP): A Systematic Literature Review,” Artificial Intelligence Evolution, pp. 1–10, Jan. 2024, doi: 

10.37256/aie.5120243220. 

5. Y. Cai et al., “Automated Program Refinement: Guide and Verify Code Large Language Model 

with Refinement Calculus,” Proceedings of the ACM on Programming Languages, vol. 9, no. 

POPL, pp. 2057–2089, Jan. 2025, doi: 10.1145/3704905. 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 8 

 

6. N. Marques, R. R. Silva, and J. Bernardino, “Using ChatGPT in Software Requirements 

Engineering: A Comprehensive Review,” Jun. 01, 2024, Multidisciplinary Digital Publishing 

Institute (MDPI). doi: 10.3390/fi16060180. 

7. N. S. Mathews and M. Nagappan, “Test-Driven Development and LLM-based Code Generation,” 

in Proceedings of the 39th IEEE/ACM International Conference on Automated Software 

Engineering, New York, NY, USA: ACM, Oct. 2024, pp. 1583–1594. doi: 

10.1145/3691620.3695527. 

8. Z. Xue et al., “LLM4Fin: Fully Automating LLM-Powered Test Case Generation for FinTech 

Software Acceptance Testing,” in Proceedings of the 33rd ACM SIGSOFT International 

Symposium on Software Testing and Analysis, New York, NY, USA: ACM, Sep. 2024, pp. 1643–

1655. doi: 10.1145/3650212.3680388. 

9. S. Wang, Y. Yu, R. Feldt, and D. Parthasarathy, “Automating a Complete Software Test Process 

Using LLMs: An Automotive Case Study,” Feb. 2025. 

10. Alex, Liu, Vivian, and Chi, “From Defects to Demands: A Unified, Iterative, and Heuristically 

Guided LLM-Based Framework for Automated Software Repair and Requirement Realization,” 

Dec. 2024, [Online]. Available: http://arxiv.org/abs/2412.05098 

11. S. M. Taghavi Far and F. Feyzi, “Large language models for software vulnerability detection: a 

guide for researchers on models, methods, techniques, datasets, and metrics,” Int J Inf Secur, vol. 

24, no. 2, p. 78, Apr. 2025, doi: 10.1007/s10207-025-00992-7. 

12. M. Haeggström, “Hands-on Use and Adaptation of AI in Developing and Testing Software 

Applications.” 

13.  H. Jin, L. Huang, H. Cai, J. Yan, B. Li, and H. Chen, “From LLMs to LLM-based Agents for 

Software Engineering: A Survey of Current, Challenges and Future,” Aug. 2024. 

14.  J. A. S. de Cerqueira, M. Agbese, R. Rousi, N. Xi, J. Hamari, and P. Abrahamsson, “Can We Trust 

AI Agents? An Experimental Study Towards Trustworthy LLM-Based Multi-Agent Systems for 

AI Ethics,” Oct. 2024, [Online]. Available: http://arxiv.org/abs/2411.08881 

15.  D. Cambaz and X. Zhang, “Use of AI-driven Code Generation Models in Teaching and Learning 

Programming: a Systematic Literature Review,” in Proceedings of the 55th ACM Technical 

Symposium on Computer Science Education V. 1, New York, NY, USA: ACM, Mar. 2024, pp. 

172–178. doi: 10.1145/3626252.3630958. 

16.  Q. Wang, J. Wang, M. Li, Y. Wang, and Z. Liu, “A Roadmap for Software Testing in Open-

Collaborative and AI-Powered Era,” ACM Transactions on Software Engineering and 

Methodology, Dec. 2024, doi: 10.1145/3709355. 

17. S. Khan and M. Daviglus, “AI-Driven Automation in Agile Development: Multi-Agent LLMs for 

Software Engineering,” 2025, doi: 10.13140/RG.2.2.20682.89281. 

18. S. Das, N. Deb, A. Cortesi, and N. Chaki, “Extracting goal models from natural language 

requirement specifications,” Journal of Systems and Software, vol. 211, May 2024, doi: 

10.1016/j.jss.2024.111981. 

19. E. Jabbar, S. Zangeneh, H. Hemmati, and R. Feldt, “Test2Vec: An Execution Trace Embedding for 

Test Case Prioritization,” Jun. 2022, [Online]. Available: http://arxiv.org/abs/2206.15428 

20. M. Boukhlif, N. Kharmoum, and M. Hanine, “LLMs for Intelligent Software Testing: A 

Comparative Study,” in Proceedings of the 7th International Conference on Networking, Intelligent 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25012232 Volume 16, Issue 1, January-March 2025 9 

 

Systems and Security, New York, NY, USA: ACM, Apr. 2024, pp. 1–8. doi: 

10.1145/3659677.3659749. 

21. M. Tufano, A. Agarwal, J. Jang, R. Z. Moghaddam, and N. Sundaresan, “AutoDev: Automated AI-

Driven Development,” Mar. 2024. 

22. C. Cao, F. Wang, L. Lindley, and Z. Wang, “Managing Linux servers with LLM-based AI agents: 

An empirical evaluation with GPT4,” Machine Learning with Applications, vol. 17, p. 100570, Sep. 

2024, doi: 10.1016/j.mlwa.2024.100570. 

23. A. Abo-eleneen, A. Palliyali, and C. Catal, “The role of Reinforcement Learning in software 

testing,” Dec. 01, 2023, Elsevier B.V. doi: 10.1016/j.infsof.2023.107325. 

24. N. Rao, K. Jain, U. Alon, C. Le Goues, and V. J. Hellendoorn, “CAT-LM Training Language 

Models on Aligned Code And Tests,” in 2023 38th IEEE/ACM International Conference on 

Automated Software Engineering (ASE), IEEE, Sep. 2023, pp. 409–420. doi: 

10.1109/ASE56229.2023.00193. 

25. H. Yin, H. Mohammed, and S. Boyapati, “Leveraging Pre-Trained Large Language Models (LLMs) 

for On-Premises Comprehensive Automated Test Case Generation: An Empirical Study,” in 2024 

9th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), IEEE, 

Nov. 2024, pp. 597–607. doi: 10.1109/ICIIBMS62405.2024.10792720. 

 

 

https://www.ijsat.org/

