

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 1

Consistency Models for Cross-Cluster Data

Synchronization in Large-Scale Multi-Tenant

Architectures

Anila Gogineni

Independent researcher, USA

anila.ssn@gmail.com

Abstract

Data synchronization is an essential feature in multi-tenanted systems, especially when large scale

distributed environment has many clusters processing tenant data in parallel. Maintaining

consistency across these clusters is not easy especially given the play between latency, faults, and

scalability. There are three primary consistency models: Strong, Eventual, and Causal, each of

which have varying levels of Reliability, Availability and effect on the System. Whereas Strong

consistency reduces the latency and makes every cluster node consistent at the expense of some

availability and scalability, while Eventual consistency provides high availability and scaling

capabilities, and it tolerates some temporary data inconsistency. Causal consistency, which is a

compromise level, retains the sequence of actions and relations for purposeful links.

Thus, the report uses graphics which help in improving the understanding of concepts. The multi-

cluster architecture diagram shows a basic architecture of a multi-tenant system focusing on the

clusters and their relations with the databases. A synchronization flow diagram demonstrates how

clusters become synchronized, and a failure-handling workflow describes how redundant

information replaces earlier more suitable information as clusters work to achieve

synchronization. Some other related figures illustrating both the Strong and Eventual consistency

workflows are also included. The diagrams, along with detailed explanation of synchronization

mechanisms, give strong ground to describe the problems and their solutions for providing data

consistency within large-scale, multi-tenant systems.

Keywords: Cross-Cluster Synchronization, Multi-Tenant Architectures, Consistency Models,

Strong Consistency, Eventual Consistency, Data Governance

I. INTRODUCTION

Cross-cluster data synchronization between multiple clusters is particularly critical in large-scale

multi-tenant systems where the different clusters work together to handle data specific to tenants. With

more and more companies and applications using cloud, elastic architectures, the functionality of

replicating data between clusters located in different geographic regions appears critical. It also

guarantees that applications run smoothly across the board and irrespective of whether data is located

jointly, or which cluster handles the request. But this synchronization process in the multi-tenant systems

has a lot of complexities especially in the consistency, latency and availability. Availability and

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 2

concurrency are two critical aspects in distributed systems, but they are more challenging in cross-

cluster settings due to partitioning, concurrent operations, and failover mechanisms. Integrating

information with other clusters requires approaches that can effectively deal with update reconciliation,

conflict resolution, and the consistency of transactions without negatively affecting system efficiency.

Low latency hence plays a central role in providing timely services to tenants while high availability

keeps disruptions to a minimum. Achieving this balance calls for choosing right consistencies models

that best meet the needs of the application as well as the limitations that are in place.

Three primary consistency models are commonly employed to address these challenges: They are

identified as Strong, Eventual, and Causal consistency. Ensuring a high level of consistency enforces

similar clusters’ homogeneity and guarantees that every reading procedure will reveal the most recent

writing. Though this model is helpful in terms of reliability, this results in boosting the latency because

of synchronization overhead. Eventual consistency puts the maximum priority on availability and

partition tolerance by allowing elements to be briefly out of sync rather than bringing them back to

synchronization later. Causal consistency maintains the order of operations as well to ensure that each

update is evenly distributed to all clusters especially to the ones that solely rely on the preceding

updates.

To understand these issues, this paper goes deep into analyzing the architectural features,

synchronization approaches, and fault handling techniques for multi-tenant, multi-cluster systems. It

begins by visualizing the overarching architecture of such systems, showcasing the interplay between

application components, clusters, and databases through Diagram 1: MT-MCA stands for Multi-Tenant

Multi-Cluster Architecture. This diagram represents the relationships between clusters and the

synchronization and isolation of data to serve tenant-specific tasks.

FIG 1: Multi-Tenant Multi-Cluster Architecture

The remainder of the paper is structured as follows: Section 2 presents a detailed description of the

consistency models and discusses their strengths and weaknesses, as well as their recommended

applications. Section 3 is devoted to discussing synch workflows, handling faults, and conflicts,

presented with diagrams and pseudocode. Section 4 focuses on the application of the material explained

in practical settings and real-life cases from industries [1]. For this reason, this study aims to close this

gap first by detailing the technical implementation, the use of visuals, and considerations gleaned from

experience when explaining cross-cluster data synchronization in large-scale multi-tenant architecture.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 3

II. BACKGROUND AND RELATED WORK

Cross-Cluster Data Synchronization

The cross-cluster data replication is one of the most important operations in distributed multi-tenant

systems for correct propagation of new changes in clusters, which can be located in different

geographical regions. This process ensures data integrity, availability, and responsiveness regardless of

distributed architectures. Data replication occurs when a particular update has to be transmitted from one

or more source cluster to target cluster [2]. This flow is not real-time and therefore methods to reduce

latency and enhance consistency are needed. Data Synchronization Flow diagram presents the flow of

application request, cluster update as well as database synchronization.

Another area is conflicts which is very important especially when several updates are performed at the

same time. Issues come up when many clusters try to edit the same aspect leading to inconsistency. Such

issues are solved with the help of the strategies like versioning, last-writer-wins (LWW), and operational

transformation (OT) [3]. Other techniques also involve the use of the sophisticated learning algorithms

for smart conflict detection and their efficient handling for enhanced data accuracy.

FIG 2: Data Synchronization Flow

Latency is one of the most critical factors in synchronizing any given task. These responses prove that

high latency can negatively impact the end user experience and systems mainly in multi-tenant systems

where tenants expect their data to be refreshed in real time. Many approaches like quorum-based

replication, delta synchronization, and eventual consistency are used to minimize latency while not

compromising on availability or consistency.

Consistency Models in Distributed Systems

Consistency models state how the state of data is seen across systems and actuall forms the base of how

designers build synchronization techniques. Three of them were identified to be widely used, namely,

the Strong, Eventual, and Causal consistency.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 4

• Strong Consistency

Strong consistency guarantees that every node within a distributed system has the updated copy of the

write operation as soon as the operation is complete. Although this model offers a coherent and stable

view of the data and ensures predictability of the data state, it involves a rather expensive overhead

because of global locking and coordination strategies [3]. Therefore, strong consistency is ideal for

scenarios that demand high data integrity, including using in financial systems or transactional

databases. Diagram 3: Consistency Model Types shows that there are different consistency models and

below are the important attributes of the different types of consistency model.

FIG 3: Consistency Model Types

• Eventual Consistency

Eventual consistency follows the availability and partition tolerance paradigm where eventual

consistency may be achieved across nodes at the expense of temporary inconsistency. Periodically, the

system achieves a coherent state due to executions of synchronization algorithms. It is widely used in the

systems that require low latency and high reliability such as content delivery networks (CDNs), and

distributed caching systems. However, it needs effective ways of handling conflict to address the risks

resulting from different update processes.

• Causal Consistency

Causal consistency gives a compromise intermediate from strong consistency by maintaining the order

of causal dependencies. It does not force constant synchronization, eliminating latency, which is inherent

in a strong consistency approach [4]. It differs from the temporary problems of eventual consistency by

guaranteeing that dependent operations are processed in a consecutive manner. This model is especially

effective for combined use-cases and social networks, as the order of operations plays an important role

in the given environment.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 5

Related Work

Some of the research works done in this area will be described in this section and the related insight and

frameworks they offered. For example, articles such as “Beyond Coding” are based on the description of

the usage of the strategy of the eventual consistency in the large cloud applications and provide solutions

to enhance synchronization of the application. Likewise, in the paper “Exploration of Data Governance”

stresses the significance of stronger consistency in maintaining the regulatory compliance of data assets.

More recent developments involve the combination of various consistency models, making them

stronger in overall performance. For instance, adaptive consistency models can switch automatically

between strong and eventual consistency depending on load and operation characteristics. Other works

have also highlighted cases of causal consistency especially complex applications and edge computing.

The comparative analysis shows that while with strong consistency one can achieve the highest level of

data accuracy, the performance overhead has limitations to scaling. On the other hand, eventual

consistency performs well in terms of high availability but needs strong conflict resolution [5]. Causal

consistency turns out to be more flexible and mediates between the choices of consistency and latency.

This paper follows these basic studies incorporating theoretical considerations as well as the operational

contexts.

III. CONSISTENCY MODELS: DETAILED ANALYSIS

Consistency models are important in any architecture of distributed computing systems as they define

the propagation, observation and completion of update operations across different clusters. Every model

has its own pros and cons, and parameters, which can highly vary depending on the specific application

necessities and the restrictions of the operational environment. This section gives a detailed

understanding of Strong, Eventual, and Causal consistency models and the important consideration of

tenant data isolation in multi-tenant systems.

Strong Consistency

Strict consistency ensures that any read operation gives the latest write operation result across the nodes

in a distributed system. This model depends on the algorithms to maintain the consistency across the

globe, and it can use Paxos or Raft or anything similar, in short it depends on global synchronization.

Diagram 7: Strong Consistency Workflow involves locking, copying, and recognizing updates for

immediate consistency [6]. Strong consistency is very deterministic, making it ideal for applications that

need correct data and very low error tolerance. For example, real-time banking systems need excellent

consistency to prevent double spending and incorrect account balance declarations between transactions

and confirmation.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 6

FIG 4: Strong Consistency Workflow

Nevertheless, there are some drawbacks that are linked with higher latency and lower availability

especially under high level of partitioning in the network. The requirement for central control reduces

scalability since this model is less appropriate for systems requiring quick response times or functioning

in a highly distributed setting. Therefore, the use of strong consistency is more common for specific

essential functions within large systems that might be using weaker models for less significant tasks.

Eventual Consistency

Eventual consistency is concerned with availability and partition tolerance keeping some nodes

momentarily inconsistent while they become consistent over time. This model can be further used in

various large scale web applications like content delivery networks (CDNs), distributed caching systems

and social networking sites as mentioned in [15]. Diagram 8: Eventual Consistency Synchronization

demonstrates how changes are disseminated through queues to several nodes and are eventually coherent

at the last step. The main advantage of SC is that it can support high availability and fault tolerance in

the system [7]. Some benefits resulting from the use of this model include, by utilizing this model,

applications can continue to run during network outages or at high traffic rates hence users do not have

to experience interruption. Conversely, eventual consistency also has some drawbacks, for example,

conflicts in updated information and achieving synchrony among nodes.

FIG 5: Eventual Consistency Synchronization

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 7

Causal Consistency

Causal consistency is between strong and eventual consistency and enforces the causal order of

operations while not requiring operations to immediately happen synchronously [8]. More specifically,

this model captures dependency between the operations and appends the related event in an ordered

manner. Diagram 2: Consistency Model Types can be categorized depending on whether an application

needs an optimized consistency or an optimized latency and is named as causal consistency.

Causal consistency is flexible as it maintains causal order invariants, as well as logical dependencies

without having to worry about general synchronization. This makes it perfect for synchronous

applications like instant messaging as well as collaborative tools like Google Docs in which it is critical

to capture the order of the actions performed.

Tenant Data Isolation

Isolation of tenant data in multi-tenant architectures is a significant critical success factor essential in

addressing data security and privacy concerns. This isolates each tenant's data conceptually and

physically so other tenants can't access it. Diagram 9: Multi-Cluster Tenant Data Isolation shows how

tenants are mapped to clusters and databases and how data from other clusters can be imported for

backup or disaster recovery [9]. Namespace partitioning, databases, and cryptography isolate. These

strategies protect tenant data and comply with GDPR and HIPAA.

FIG 6: Tenant Data Isolation in Multi-Cluster

Tenant data isolation is not only about fault tolerance but concerns performance as well. By

compartmentalizing data, the failure in a certain system will not have a domino effect on other tenants’

systems making it reliable. Also, isolation contributes to resource customization, whereby tenants

enjoying high workloads can freely increase concurrently with little impact on the other systems for

other tenants.

IV. IMPLEMENTATION CHALLENGES AND SOLUTIONS

In multi-tenant, multi-cluster systems, the task of synchronizing data across clusters is not without its

challenges. They are mainly due to the problem of performing parallel updates, coping with network

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 8

partition, and maintaining data replication between different database systems. This section covers

problems related to synchronization that may include conflicts, version incompatibility, and failure, as

well as solutions to improve the reliability of such systems.

Common Synchronization Issues

1. Conflict Detection

Another issue that relates with the synchronization of data between different clusters is how to

disambiguate conflicts that may come up due to simultaneous update of the same data by different

clusters or nodes in this case. When there are concurrent write requests on the same item, there may be

conflicts and differences in clusters [10]. It was also suggested that to implement conflict detection it

should employ tools like a version control system or even compare timestamps in order to get an insight

of conflicting changes. These conflicts are detected and resolved through the Conflict Resolution

Process (Diagram 6), which ranges from identifying incoming data to employing timestamps or actual

merging methods [12].

FIG 7: Conflict Resolution Process

2. Version Mismatches

When it comes to distributed systems and especially those with eventual consistency, version updates

are often problematic. These are evident in scenarios where the nodes within different clusters process

wrong or different versions of the same data [11]. This challenge is especially important in large scale

systems where updates are done concurrently hence causing for a while, the different sites to be out of

sync. Dealing with version discrepancies entails more complex approaches to versioning assortment

including vector clocks and operational transformation practices to make nodes converge through the

latest state without compromising on the data.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 9

3. Failure Handling

Network failures, cluster crash or system down, will specifically cause a delay with data

synchronization. These failures can lead to propagation failure and hence create inconsistencies and in

the extreme scenario data loss. The Failure Handling Workflow diagram (Diagram 4) explains the

process of handling the scenarios of synchronized failure, retrying the contingency plans, detecting

conflicts or generating alerts in case of unresolved one. Failures mean that there must be several layers

of error handling and the ability to automatically resume work in case of partial failures without losing

integrity or availability.

FIG 8: Failure Handling Workflow

Strategies for Fault Tolerance and Resilience

However, due to the synchronization issues, fault tolerance and resilience techniques should be

deployed. It helps to ensure that data remain synchronous even in case of node loss or splitting of the

network.

1. Data Replication and Redundancy

Data redundancy across multiple nodes and clusters is one of the most used approaches when it comes to

fault tolerance. The way is to ensure replication of the same data on different nodes, enabling the system

to fully operate even in case of nodal failure. Replication allows for high availability and helps to

prevent data loss in the event of failure [13]. Furthermore, it can be designed so that the system switches

to the secondary replicas when there are network problems, while synchronizing the application.

2. Quorum-based Systems

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 10

In distributed systems, consensus protocols such as Paxos or Raft are used where most of the nodes have

to agree on the state of the data before making changes. These protocols help to prevent the problem

where multiple replicas are allowed to have different data by demanding that the change be accepted by

most replicas. This way, updates are passed through clusters in a uniform and coherent approach and the

issue of contradiction or dissimilarities is averted.

3. Failure Recovery Protocols

Other recovery processes as rollback techniques, compensating transactions assist in restoring the

consistency of the system after the failure. These protocols are able to identify a failure that may occur

when synchronizing information and either undo the alterations made or apply adjustments to attain

coherence. Also, the presence of tools for automatic conflict resolution and manual procedures is critical

to guaranteeing that, when the system is recovered, the data state is the correct one and is unified.

V. PRACTICAL APPLICATIONS AND CASE STUDIES

Cross-cluster data synchronization is the most important in big systems including e-commerce, cloud

computing, and Internet of Things (IoT) systems among others. These systems must operate in a manner

that allows data to flow smoothly within a cluster setup and keep users on different geographic locations

and devices updated on the latest information they need. The coordination translates into consistent,

available and fault tolerant data in large and complex system communication.

FIG 9: Operation Flow Across Clusters

E-commerce platforms involve everyday consumer interactions and transactions across various clusters,

making it necessary to have a uniform layout. For instance, when a customer places an order in one

regional cluster, that information has to be propagated to other clusters to update stock status and

payment details while maintaining consistent customer experience [14]. Eventual consistency models

may best serve such applications to efficiently achieve high availability and scalability while ensuring

that nodes will eventually converge on the correct values even if they are inconsistent for a while. The

Write Operation Flow Across Clusters diagram (Diagram 5) depicts the order flow from the client to the

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 11

multiple replicas in the e-commerce architecture to demonstrate how the data disseminates and gets

synchronized across clusters to support the consistent order processing.

VI. CONCLUSION

Cross-cluster synchronization is essential in ensuring data fidelity and accessibility in large-scale multi-

tenant environments. In such systems, data consistency among distributed cluster nodes plays a crucial

role for implementing high availability, low latencies, and fault tolerance. Synchronization is difficult

when it must meet tenant needs without losing data or corrupting it. Strong, Eventual, and Causal

consistency models were investigated in this research, each with pros and downsides. Assuming all

clones are consistent, this increases latency and bottleneck. For systems that can tolerate network delay,

eventual consistency offers availability and scalability. Causal consistency, which allows more

synchronization but maintains dependencies, is a model that can be utilized in collaborative

technologies.

APPENDIX

Multi-Tenant, Multi-Cluster Data Synchronization Configuration

version: "1.0"

1. System Configuration

system:

 architecture:

 description: Multi-Tenant, Multi-Cluster Setup for Data Synchronization

 clusters:

 - cluster1:

 region: US-East

 database: Cluster1-DB

 tenants: [tenantA, tenantB]

 - cluster2:

 region: EU-West

 database: Cluster2-DB

 tenants: [tenantC, tenantD]

 - cluster3:

 region: APAC-South

 database: Cluster3-DB

 tenants: [tenantE, tenantF]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 12

 synchronization:

 mode: "eventual-consistency" # Options: strong-consistency, eventual-consistency, causal-

consistency

 replication:

 frequency: "real-time" # Options: real-time, batch

 conflict_resolution:

 enabled: true

 strategy: "merge" # Options: merge, last-write-wins, custom

 retries: 3

 failure_threshold: 2 # Number of failed attempts before alerting

 consistency_models:

 strong:

 description: Guarantees data consistency across all clusters immediately after a write.

 workflow: "sync-primary-to-secondary"

 eventual:

 description: Data may be temporarily inconsistent, but will eventually synchronize across clusters.

 workflow: "delayed-sync"

 causal:

 description: Ensures data consistency based on causal relationships, providing weaker consistency

guarantees.

 workflow: "dependency-tracking"

2. Data Synchronization Configuration

data_sync:

 sync_flow:

 - source_cluster: "Cluster1"

 target_clusters: ["Cluster2", "Cluster3"]

 sync_method: "push"

 sync_frequency: "high"

 data_types:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 13

 - "customer_data"

 - "order_data"

 - source_cluster: "Cluster2"

 target_clusters: ["Cluster1", "Cluster3"]

 sync_method: "pull"

 sync_frequency: "medium"

 data_types:

 - "payment_data"

 - "inventory_data"

 conflict_handling:

 conflict_detection:

 enabled: true

 mechanism: "timestamp-based" # Options: timestamp-based, version-based, custom

 conflict_resolution:

 strategy: "merge"

 max_retry_attempts: 3

 fallback_strategy: "last-write-wins"

 failure_handling:

 retries: 5

 alert_on_failure: true

 alert_threshold: 3

3. Failure Handling Configuration

failure_handling:

 retry_policy:

 max_retries: 3

 backoff_strategy: "exponential" # Options: exponential, linear

 fault_tolerance:

 mechanism: "replication"

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 14

 failover:

 enabled: true

 target_cluster: "Cluster2" # Target cluster to failover to in case of failure

 recovery_time_sla: "5min"

 failure_alerts:

 enabled: true

 alert_level: "critical" # Options: critical, warning, info

 alert_email: "admin@sync-system.com"

 alert_sms: "+1234567890"

4. Tenant Data Isolation Configuration

tenant_isolation:

 isolation_level: "strict" # Options: strict, loose

 cluster_assignment:

 tenantA: "Cluster1"

 tenantB: "Cluster1"

 tenantC: "Cluster2"

 tenantD: "Cluster2"

 tenantE: "Cluster3"

 tenantF: "Cluster3"

 data_encryption:

 enabled: true

 encryption_method: "AES-256" # Options: AES-256, RSA-2048

5. Synchronization Monitoring and Reporting

monitoring:

 sync_status:

 enabled: true

 reporting_interval: "30min" # Frequency of status reports

 report_format: "JSON"

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 15

 conflict_report:

 enabled: true

 reporting_interval: "1hour"

 report_format: "CSV"

 performance_metrics:

 enabled: true

 metrics:

 - "latency"

 - "throughput"

 - "error_rate"

 alert_thresholds:

 latency: 500ms # Maximum latency in ms

 throughput: 1000ops/sec # Minimum operations per second

 error_rate: 2% # Maximum error rate percentage

6. Logging Configuration

logging:

 level: "info" # Options: info, debug, error, critical

 log_to_file: true

 log_file_path: "/var/log/data_sync.log"

 rotate_logs: true

 log_retention_period: "30days"

REFERENCES

1. Huang, C.K. and Pierre, G., 2024, December. UnBound: Multi-Tenancy Management in Scalable

Fog Meta-Federations. In UCC 2024-17th IEEE/ACM International Conference on Utility and Cloud

Computing.

2. Zhang, Z., 2023, November. Design and Implementation of Massive Data Migration System Based

on Object Storage. In International Conference on Cognitive based Information Processing and

Applications (pp. 305-315). Singapore: Springer Nature Singapore.

3. Sebrechts, M., Borny, S., Wauters, T., Volckaert, B. and De Turck, F., 2021. Service relationship

orchestration: Lessons learned from running large scale smart city platforms on kubernetes. IEEE

Access, 9, pp.133387-133401.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011748 Volume 16, Issue 1, January-March 2025 16

4. Armenatzoglou, N., Basu, S., Bhanoori, N., Cai, M., Chainani, N., Chinta, K., Govindaraju, V.,

Green, T.J., Gupta, M., Hillig, S. and Hotinger, E., 2022, June. Amazon Redshift re-invented.

In Proceedings of the 2022 International Conference on Management of Data (pp. 2205-2217).

5. Edara, P., Forbesj, J. and Li, B., 2024, June. Vortex: A Stream-oriented Storage Engine For Big Data

Analytics. In Companion of the 2024 International Conference on Management of Data (pp. 175-

187).

6. B. Shaik, Jayaram Immaneni, and K. Allam, “Unified Monitoring for Hybrid EKS and On-Premises

Kubernetes Clusters,” Journal of Artificial Intelligence Research and Applications, vol. 4, no. 1, pp.

649–669, 2024, Available: https://aimlstudies.co.uk/index.php/jaira/article/view/331.

7. Sarmiento, D.E., Lebre, A., Nussbaum, L. and Chari, A., 2021. Decentralized SDN control plane for

a distributed cloud-edge infrastructure: A survey. IEEE Communications Surveys & Tutorials, 23(1),

pp.256-281.

8. Oussous, A. and Benjelloun, F.Z., 2022. A comparative study of different search and indexing tools

for big data. Jordanian Journal of Computers and Information Technology, 8(1).

9. Huang, C.K., 2024. Scalability of Public Geo-Distributed Fog Computing Federations (Doctoral

dissertation, Université de Rennes).

10. Song, E., Song, Y., Lu, C., Pan, T., Zhang, S., Lu, J., Zhao, J., Wang, X., Wu, X., Gao, M. and Li,

Z., 2024, August. Canal Mesh: A Cloud-Scale Sidecar-Free Multi-Tenant Service Mesh

Architecture. In Proceedings of the ACM SIGCOMM 2024 Conference (pp. 860-875).

11. Theodoropoulos, T., Rosa, L., Boudi, A., Benmerar, T.Z., Makris, A., Taleb, T., Cordeiro, L.,

Tserpes, K. and Song, J., 2024. Cross-Cluster Networking to Support Extended Reality

Services. arXiv preprint arXiv:2405.00558.

12. Amiri, M.J., Shu, D., Maiyya, S., Agrawal, D. and El Abbadi, A., 2023, April. Ziziphus: Scalable

data management across byzantine edge servers. In 2023 IEEE 39th International Conference on

Data Engineering (ICDE) (pp. 490-502). IEEE.

13. Khan, Q.W., Khan, A.N., Rizwan, A., Ahmad, R., Khan, S. and Kim, D.H., 2023. Decentralized

machine learning training: a survey on synchronization, consolidation, and topologies. IEEE

Access, 11, pp.68031-68050.

14. Gama Garcia, A., Alcaraz Calero, J.M., Mora Mora, H. and Wang, Q., 2024. ServiceNet: resource-

efficient architecture for topology discovery in large-scale multi-tenant clouds. Cluster Computing,

pp.1-18.

15. Battula, M., 2024, April. A Systematic Review on a Multi-tenant Database Management System in

Cloud Computing. In 2024 International Conference on Cognitive Robotics and Intelligent Systems

(ICC-ROBINS) (pp. 890-897). IEEE.

https://www.ijsat.org/

