

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011410 Volume 16, Issue 1, January-March 2025 1

AKS Node and Pod Lifecycle: Identification and

Resolution of Common Issues

Harika Sanugommula

harikasanugommula.hs@gmail.com

Independent Researcher

Abstract

This paper explores the Azure Kubernetes Service (AKS) focusing on the node and the pod

lifecycle, their phases & common issues, and operational challenges associated with nodes and

pods, Commands used. AKS, a managed Kubernetes service by Microsoft, provides the

infrastructure for automating containerized application deployment. The study delves into the

intricacies of node and pod lifecycle management, highlighting potential issues such as

CrashLoopBackOff, Failure, Node not ready and ImagePullBackOff states, Kubelet node not

found. Detailed analysis on issue identification and resolution methods aims to provide readers

with practical strategies for maintaining stable and resilient AKS environments.

Keywords: AKS, Kubernetes, Node Lifecycle, Pod Lifecycle, CrashLoopBackOff,

ImagePullBackOff, Node not ready, Failed,Kubelet Node Not Found,Cloud Orchestration,

Container Management

Introduction

Azure Kubernetes Service (AKS) is a tool that helps you run and manage applications in containers

more easily. Kubernetes is a widely used tool for managing big applications, so looking after nodes and

pods in AKS is important for better performance and dependability of the system. In Kubernetes, nodes

are the computers that run applications, and pods are the smallest units that can be set up in the

Kubernetes system. This paper examines how AKS nodes and pods work from the beginning to the end,

and the usual issues that administrators encounter in real situations.

Node Lifecycle in AKS

In AKS, nodes are virtual machines that provide the physical resources for running pods. Managed by

Kubernetes, nodes follow a lifecycle from creation, operation, maintenance, and decommissioning.

Understanding node status (Ready, NotReady, Unknown) and the node’s health metrics is essential.

When nodes experience issues, they can enter a NotReady state due to hardware failures, resource

constraints, or connectivity problems. Effective node management includes monitoring CPU, memory

utilization, and system events to preemptively address potential bottlenecks.

Node States and Common Issues

1. Ready State: Indicates that the node is functioning correctly.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011410 Volume 16, Issue 1, January-March 2025 2

2. NotReady State: Shows that the node may be unresponsive due to connectivity or resource

issues.

3. Unknown State: Occurs when the node cannot communicate with the API server.

Resolution often involves inspecting kubectl describe node [node-name] logs to analyze the causes and

taking corrective actions, such as adjusting resource quotas or updating node configurations.

Pod Lifecycle in AKS

Pods, the fundamental units in Kubernetes, encapsulate containers, storage, and networking. They

progress through various phases (Pending, Running, Succeeded, Failed, CrashLoopBackOff) as

determined by scheduling, runtime status, and termination. Pod health and status play a significant role

in ensuring application availability. Factors such as image pull issues, misconfigurations, and resource

shortages can affect pod lifecycle and stability.

Pod Phases

• Pending: The pod is waiting for resource allocation.

• Running: The pod is actively functioning.

• Succeeded: The pod has completed its task successfully.

• Failed: The pod failed due to errors or exceeded resource limits.

• CrashLoopBackOff: A recurring error cycle, typically caused by misconfigurations or

dependency failures.

Administrators must be vigilant in monitoring the pods, especially in error-prone states, to troubleshoot

and rectify issues promptly.

Common Pod Issues and Resolution Strategies

In Kubernetes, certain pod-related issues, such as the `CrashLoopBackOff`, `ImagePullBackOff`,

InvalidImageName`, `Kubernetes node not ready`, ` Kubelet Node Not Found `, and `Failed` states,

frequently arise and require targeted troubleshooting steps to resolve.

The `CrashLoopBackOff` state occurs when a pod repeatedly crashes and Kubernetes attempts to restart

it continuously. This can happen due to various reasons, including misconfigured application parameters

or unmet service dependencies that are essential for the pod’s functionality. To diagnose the issue,

administrators can use `kubectl logs [pod-name] `, which reveals error messages in the log files,

providing valuable insights into what might be causing the failures. Addressing this problem often

involves identifying and correcting configuration errors within the deployment files, ensuring that all

required services are active and accessible, and, in some cases, modifying the pod’s restart policy to

align with the application’s needs and stability requirements.

Another common pod issue is the `ImagePullBackOff` state, which indicates that Kubernetes cannot

retrieve the specified container image from its registry. To diagnose this issue, administrators can

execute the `kubectl describe pod [pod-name] ` command, which details potential image pull errors. This

state may occur due to factors such as incorrect image names, authentication problems with the registry,

or network connectivity issues that prevent access to the repository. Resolving `ImagePullBackOff`

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011410 Volume 16, Issue 1, January-March 2025 3

typically requires verifying the accuracy of the image name and registry path, ensuring that the network

connection to the registry is functional, and, if necessary, updating Kubernetes secrets or credentials to

handle registry authentication correctly.

In Kubernetes, the `Node Not Ready` status occurs when a node is unavailable to run or manage pods

due to connectivity or resource issues. This typically happens when a node fails health checks or has

system errors that interfere with its normal function. Diagnosing the issue involves running `kubectl

describe node [node-name] ` to check for resource limitations (CPU, memory, or disk) and reviewing

logs for errors from key components like the `kubelet`. Resolutions vary based on the cause: freeing up

resources, troubleshooting network connectivity to the API server, or even restarting the `kubelet`

service or node itself often restores the node’s readiness and stabilizes the cluster.

The `Kubelet Node Not Found` error indicates that the kubelet on a node is unable to connect to the

Kubernetes API server or register itself properly, often due to network issues or misconfiguration in the

kubelet. This error can disrupt the cluster’s ability to manage and schedule pods on the affected node,

reducing overall cluster efficiency.

To identify and troubleshoot this issue, first inspect the node’s kubelet logs by running the command

`journalctl -u kubelet`, which can reveal connectivity-related errors or clues to potential

misconfigurations. Next, verify network settings to ensure that DNS is correctly configured, and that the

node can access the API server without obstruction. It is also essential to check that the kubelet is

running with correct configuration parameters, especially those specifying the API server endpoint.

Misconfigured settings here can prevent proper communication between the node and the Kubernetes

control plane, leading to registration failures.

The `InvalidImageName` error in Kubernetes arises when a pod fails to start due to an incorrect or

unrecognized image name. This issue typically occurs because of syntax errors in the image’s name,

such as missing tags, incorrect registry paths, or typographical errors. Diagnosis involves using `kubectl

describe pod [pod-name] `, which can provide specific details on the image error. Logs may show the

exact nature of the issue, such as an "invalid reference format" error if the image name is incorrectly

formatted.

To resolve this issue, first verify that the image name is correctly formatted and includes any necessary

tags. Ensure that the registry path is accurate and accessible, especially if the image is hosted in a private

registry, which may require Kubernetes secrets for authentication. If the problem persists, confirm that

the image exists in the specified repository. Making these adjustments to the deployment configuration

and redeploying the pod typically resolves the error, allowing Kubernetes to successfully pull and run

the desired container image.

Finally, the `Failed` state indicates that a pod has terminated due to initialization errors or resource

constraints. In such cases, the `kubectl describe pod [pod-name] ` command is useful for reviewing error

messages and understanding the root cause of the issue, which may involve insufficient resources like

CPU or memory, or configuration errors in the pod’s deployment files. Addressing the `Failed` state

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011410 Volume 16, Issue 1, January-March 2025 4

often entails adjusting resource quotas within the deployment configuration to meet the application’s

requirements or rectifying any configuration errors that may be impacting the pod’s ability to initialize

properly. By following these diagnostic and resolution steps, Kubernetes administrators can proactively

manage these common pod states, ensuring smoother application deployment and operational resilience

in the Kubernetes environment.

Commands used for troubleshooting

1. kubectl get nodes

2. kubectl describe nodes <name of the node>

3. kubectl get nodes -o wide

4. kubectl get pods

5. kubectl describe pod <name of the pod>

6. kubectl logs <name of the pod> -c <name of container>

7. kubectl get pods -o wide

8. kubectl top nodes

Challenges in troubleshooting Kubernetes issues

Kubernetes is a powerful and complicated tool that helps manage container applications located in

various places. But the details can make it difficult to solve issues with things like nodes and pods. One

of the biggest problems is gathering and looking at logs. In a Kubernetes cluster, logs are kept in various

places such as nodes, pods, containers, and the control center. This makes it hard to collect and link

important information. To figure out what went wrong, you need to look at records from different

sources. These include kubelet logs, control plane logs, and container logs, which might have useful

information. If you don't use a central logging system like Elasticsearch or Fluentd, gathering logs from

different parts can take a long time and can cause errors. Even with central logging, large Kubernetes

setups generate a lot of log information. This can make it difficult for engineers to handle and find the

main reason for issues.

Another big problem is dealing with not having enough resources, like CPU, memory, or storage.

Kubernetes workloads often require specific amounts of resources. If these amounts are incorrect or if a

node doesn't have enough resources, pods may not be scheduled, might be removed, or may not work

well. Finding out why there's a problem with system resources, like if it's because of the CPU, memory,

or storage, can be tricky. This is because information about these resources is found in different places in

the system, like the container management, the server resources, and the network setup. To find issues

with resources, you need to understand how Kubernetes handles resources and how the application uses

them. Kubernetes can fail in unexpected ways, making it difficult to identify issues. The failures might

happen randomly or only under certain conditions. Sometimes, temporary issues like slow internet or

trouble getting data can cause pods to stop working for a while.

Kubernetes is an intelligent system that can fix its own issues. Because of this, problems usually get

resolved automatically, and it can be hard to understand what caused them. This can make it difficult to

fix mistakes or understand why something didn't work. The combination of problems such as hard log

collection, not enough resources, and slow system responses makes it difficult to solve issues in

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25011410 Volume 16, Issue 1, January-March 2025 5

Kubernetes environments, and it can take a long time. Admins must use various tools and ways, like

checking systems, keeping track of information, and solving program problems, to manage issues and

fix them quickly.

Future Considerations for AKS Node and Pod Management

Future improvements in AKS and Kubernetes might make nodes and pods more stable. They could also

use AI to help find problems faster and use resources better. Also, using alert systems that warn us early

and automatic fixing when there are problems with nodes or pods can greatly lower work effort. Using

predictive maintenance for nodes can help teams spot hardware or virtual machine problems before they

impact how long applications stay up and running.

Conclusion

Good management of AKS nodes and pods is key to making sure container applications work well and

can grow. This paper explored how AKS nodes and pods operate from beginning to end, common issues

that can occur while using them, and methods for identifying and solving these problems. Using good

ways to manage nodes and pods helps keep applications working well and makes Kubernetes

environments more efficient. Future updates in AKS and Kubernetes monitoring could offer new

methods to improve how we manage containers and address current problems.

References

[1] A. K. Verma, “Container Orchestration Using Kubernetes: A Case Study,” IEEE Transactions on

Cloud Computing, vol. 7, no. 1, pp. 36-49, 2018.

[2] S. S. Chittimalli, “Analysis of Cloud Resource Allocation and Management Techniques,” IEEE

Journal of Cloud Computing, vol. 6, no. 2, pp. 67-78, 2017.

[3] J. Lee and P. Sharma, “Managing Cloud Infrastructure Through Kubernetes and AKS,” IEEE

Transactions on Network and Service Management, vol. 15, no. 3, pp. 203-215, 2019.

[4] R. K. Pandey, “Troubleshooting Kubernetes Pods in Large-Scale Systems,” International Journal of

Advanced Cloud Computing, vol. 8, no. 2, pp. 115-124, 2018.

[5] L. Zhang, “Container Image Management and Dependency Handling in Cloud Platforms,” IEEE

Cloud Computing, vol. 5, no. 4, pp. 89-94, 2017.

https://www.ijsat.org/

