

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT24041213 Volume 15, Issue 4, October-December 2024 1

AI Model Management with AWS Cloud

Infrastructure

Prabu Arjunan

Senior Technical Marketing Engineer

prabuarjunan@gmail.com

Abstract

State-of-the-art AI development requires a strong infrastructure that could handle everything:

from initial experimentation to the production deployment of a model. AWS offers an end-to-end

suite of services that allows enterprises to build, train, deploy, and manage machine learning

models at scale. This whitepaper details an enterprise approach to managing AI models using

AWS Cloud Infrastructure with version control, reproducibility, and operational efficiency in

mind.

Keywords: AWS Cloud, AWS SageMaker, MLOps, Model Registry, Machine Learning Pipeline,

Model Deployment, Training Infrastructure, CodeCommit, API Gateway, Auto Scaling, Step

Functions, CloudWatch, Infrastructure as Code, DevOps

Architecture Overview

Well-architected cloud infrastructure forms the basis for the management of effective AI models. Refer

the AWS ML Architecture, The core to the development environment is Amazon SageMaker Studio [1]

and a completely integrated environment that gives the data scientist and ML engineer exactly what they

need in order to develop. Furthermore, it is directly integrated into AWS CodeCommit, a versioning

platform where changes to any model code are tracked, therefore maintainable. To support

experimentation and development, Amazon SageMaker Notebooks provide a flexible environment to

prototype models and analyze results, while Amazon Elastic Container Registry (ECR) will store and

manage the custom container images used in training.

The training infrastructure uses SageMaker Training Jobs to manage distributed model training across

multiple instances. The training data and model artifacts are stored in Amazon S3, which provides

virtually unlimited scalable storage that is versioning-enabled. To ensure rigor in experimentation, all

training runs are tracked using SageMaker Experiments, capturing parameters, metrics, and artifacts of

each run. Data preprocessing is managed via SageMaker Processing Jobs for reproducibility with each

run. This helps to manage technical debt in machine learning systems, as proposed by Sculley et al. [5],

while maintaining software engineering best practices for ML applications as identified by Amershi et

al. [6].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT24041213 Volume 15, Issue 4, October-December 2024 2

AWS ML Architecture:

Model Registry and Versioning

Version control and model governance are considered the most salient features of any machine learning

pipeline. SageMaker Model Registry is a single source of truth that stores all models, their metadata,

artifacts, and approval status for each model iteration. AWS Step Functions enables complex model

workflows, where a logical flow from training to validation to deployment is automated. This was

further complemented by versioning in S3 for maintaining the complete history of model artifacts and

training data. Custom metadata tagging enables model governance with lineage, purpose, and

performance characteristics.

Deployment and Serving Infrastructure

Serving a production model is a task that requires robust, scalable infrastructure. SageMaker Endpoints

represent the main mechanism for model deployment-provide secure, highly available inference

endpoints. They enable Auto Scaling groups to manage variable load patterns effectively. For customers

operating large numbers of models, SageMaker Multi-Model Endpoints provide optimal costs by hosting

multiple models on shared infrastructure. Amazon API Gateway exposes these models through REST

APIs, making them easily integrate with existing applications and services.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT24041213 Volume 15, Issue 4, October-December 2024 3

Implementation Approach

The implementation starts by setting up the development environment using Infrastructure as Code via

AWS CloudFormation. This ensures consistency in the setup of environments and allows version control

of changes in infrastructure. The following CloudFormation template sets up a basic development

environment:

Yaml code

Resources:

SageMakerDomain:

Type: AWS::SageMaker::Domain

Properties:

AuthMode: IAM

DefaultUserSettings:

ExecutionRole: !GetAttSageMakerExecutionRole.Arn

DomainName: ai-model-management

SubnetIds:

-!Ref PrivateSubnet1

-!Ref PrivateSubnet2

VpcId: !Ref VPC

Training pipelines have been implemented by combining the SageMaker Pipeline definitions with Step

Functions workflows. These provide complete automation of the training workflow, ranging from

preparation of the data through model evaluation. This could include stages for data preprocessing,

model training, evaluation, and registration:

Python code

defcreate_training_pipeline(model_name, data_path):

return {

'Steps': [

 {

'Name': 'PreprocessingStep',

'Type': 'Processing',

'Properties': {

'ProcessingResources': {

'ClusterConfig': {

'InstanceCount': 1,

'InstanceType': 'ml.m5.xlarge'

 }

 }

 }

 },

 {

'Name': 'TrainingStep',

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT24041213 Volume 15, Issue 4, October-December 2024 4

'Type': 'Training',

'Properties': {

'AlgorithmSpecification': {

'TrainingImage': '<ecr-image-uri>',

'TrainingInputMode': 'File'

 },

'ResourceConfig': {

'InstanceCount': 1,

'InstanceType': 'ml.p3.2xlarge',

'VolumeSizeInGB': 50

 }

 }

 }

]

 }

Operational Procedures and Monitoring

Effective management of AI models requires thorough operational procedures and monitoring.

CloudWatch forms the backbone of the monitoring infrastructure, collecting metrics, logs, and telemetry

data from all components of the ML pipeline. SageMaker Model Monitor continuously evaluates

production models for data drift and quality issues, enabling proactive maintenance and updates.

The operational lifecycle begins in the development phase, where data scientists work in isolated

environments with version-controlled code and data. As models progress through training and

validation, automated processes capture performance metrics and validate results against predefined

criteria [3]. Successful models are registered in the Model Registry and progress through staging

environments before reaching production.

Production deployments use blue-green deployment strategies, which enable zero-downtime updates and

easy rollback. For cost-effective resource utilization at performance under varying loads, auto-scaling

policies are set. The security posture of the system is kept updated through regular security audits, access

control reviews, and compliance checks.

Cost Optimization and Security

Cost optimization in AI model management requires careful attention to resource utilization and

deployment strategies [4]. The system leverages spot instances for training workloads where appropriate,

implements auto-scaling for inference endpoints, and uses Multi-Model Endpoints to optimize hosting

costs. Regular cost analysis and cleanup procedures prevent resource waste and control cloud

spending.Security is implemented through a number of layers, starting with the network isolation using

VPCs and security groups. IAM roles and policies implement the principle of least privilege, while

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT24041213 Volume 15, Issue 4, October-December 2024 5

encryption protects data both at rest and in transit. Regular security audits and automated compliance

checks ensure the environment maintains its security posture over time.

Conclusion

This AI Model Management solution provides organizations with a robust foundation for managing

machine learning workflows at scale. This modular approach helps manage technical debt in machine

learning systems [5] while maintaining software engineering best practices for ML applications [6]. This

allows teams to ensure quality, security, and operational standards are maintained within their AI

initiatives by using AWS services where appropriate, leveraging established operation procedures. Due

to its modular design, the solution allows for expansion and adaptation to future needs of an organization

and/or additional AWS services that are made available.

References

1. AWS. "Amazon SageMaker Developer Guide." Amazon Web Services Documentation.

https://docs.aws.amazon.com/sagemaker/latest/dg/

2. AWS. "MLOps with Amazon SageMaker." Amazon Web Services Documentation.

https://docs.aws.amazon.com/sagemaker/latest/dg/mlops.html

3. Author(s). (2023). Title. arXiv preprint arXiv:2410.21346v1

https://arxiv.org/pdf/2410.21346v1

4. AWS AI Services Team. (2023). "AWS Prescriptive Guidance: Planning for successful MLOps." AWS

Prescriptive Guidance.

https://docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/ml-operations-planning/ml-operations-

planning.pdf

5. Sculley, D & Holt, Gary &Golovin, Daniel &Davydov, Eugene & Phillips, Todd & Ebner, Dietmar &

Chaudhary, Vinay & Young, Michael & Dennison, Dan. (2015). Hidden Technical Debt in Machine

Learning Systems. NIPS. 2494-2502.

6. Amershi et al., "Software Engineering for Machine Learning: A Case Study," 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),

Montreal, QC, Canada, 2019, pp. 291-300, doi: 10.1109/ICSE-SEIP.2019.00042.

https://www.ijsat.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/
https://docs.aws.amazon.com/sagemaker/latest/dg/mlops.html
https://arxiv.org/pdf/2410.21346v1
https://docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/ml-operations-planning/ml-operations-planning.pdf
https://docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/ml-operations-planning/ml-operations-planning.pdf

