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Abstract 

State-of-the-art AI development requires a strong infrastructure that could handle everything: 

from initial experimentation to the production deployment of a model. AWS offers an end-to-end 

suite of services that allows enterprises to build, train, deploy, and manage machine learning 

models at scale. This whitepaper details an enterprise approach to managing AI models using 

AWS Cloud Infrastructure with version control, reproducibility, and operational efficiency in 

mind. 
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Architecture Overview 

Well-architected cloud infrastructure forms the basis for the management of effective AI models. Refer 

the AWS ML Architecture, The core to the development environment is Amazon SageMaker Studio [1] 

and a completely integrated environment that gives the data scientist and ML engineer exactly what they 

need in order to develop. Furthermore, it is directly integrated into AWS CodeCommit, a versioning 

platform where changes to any model code are tracked, therefore maintainable. To support 

experimentation and development, Amazon SageMaker Notebooks provide a flexible environment to 

prototype models and analyze results, while Amazon Elastic Container Registry (ECR) will store and 

manage the custom container images used in training. 

The training infrastructure uses SageMaker Training Jobs to manage distributed model training across 

multiple instances. The training data and model artifacts are stored in Amazon S3, which provides 

virtually unlimited scalable storage that is versioning-enabled. To ensure rigor in experimentation, all 

training runs are tracked using SageMaker Experiments, capturing parameters, metrics, and artifacts of 

each run. Data preprocessing is managed via SageMaker Processing Jobs for reproducibility with each 

run. This helps to manage technical debt in machine learning systems, as proposed by Sculley et al. [5], 

while maintaining software engineering best practices for ML applications as identified by Amershi et 

al. [6]. 
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AWS ML Architecture: 

 

Model Registry and Versioning 

Version control and model governance are considered the most salient features of any machine learning 

pipeline. SageMaker Model Registry is a single source of truth that stores all models, their metadata, 

artifacts, and approval status for each model iteration. AWS Step Functions enables complex model 

workflows, where a logical flow from training to validation to deployment is automated. This was 

further complemented by versioning in S3 for maintaining the complete history of model artifacts and 

training data. Custom metadata tagging enables model governance with lineage, purpose, and 

performance characteristics. 

Deployment and Serving Infrastructure 

Serving a production model is a task that requires robust, scalable infrastructure. SageMaker Endpoints 

represent the main mechanism for model deployment-provide secure, highly available inference 

endpoints. They enable Auto Scaling groups to manage variable load patterns effectively. For customers 

operating large numbers of models, SageMaker Multi-Model Endpoints provide optimal costs by hosting 

multiple models on shared infrastructure. Amazon API Gateway exposes these models through REST 

APIs, making them easily integrate with existing applications and services. 
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Implementation Approach 

The implementation starts by setting up the development environment using Infrastructure as Code via 

AWS CloudFormation. This ensures consistency in the setup of environments and allows version control 

of changes in infrastructure. The following CloudFormation template sets up a basic development 

environment: 

Yaml code 

Resources: 

SageMakerDomain: 

Type: AWS::SageMaker::Domain 

Properties: 

AuthMode: IAM 

DefaultUserSettings: 

ExecutionRole: !GetAttSageMakerExecutionRole.Arn 

DomainName: ai-model-management 

SubnetIds:  

-!Ref PrivateSubnet1 

-!Ref PrivateSubnet2 

VpcId: !Ref VPC 

Training pipelines have been implemented by combining the SageMaker Pipeline definitions with Step 

Functions workflows. These provide complete automation of the training workflow, ranging from 

preparation of the data through model evaluation. This could include stages for data preprocessing, 

model training, evaluation, and registration: 

Python code 

defcreate_training_pipeline(model_name, data_path): 

return { 

'Steps': [ 

            { 

'Name': 'PreprocessingStep', 

'Type': 'Processing', 

'Properties': { 

'ProcessingResources': { 

'ClusterConfig': { 

'InstanceCount': 1, 

'InstanceType': 'ml.m5.xlarge' 

                        } 

                    } 

                } 

            }, 

            { 

'Name': 'TrainingStep', 
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'Type': 'Training', 

'Properties': { 

'AlgorithmSpecification': { 

'TrainingImage': '<ecr-image-uri>', 

'TrainingInputMode': 'File' 

                    }, 

'ResourceConfig': { 

'InstanceCount': 1, 

'InstanceType': 'ml.p3.2xlarge', 

'VolumeSizeInGB': 50 

                    } 

                } 

            } 

        ] 

    } 

 

Operational Procedures and Monitoring 

Effective management of AI models requires thorough operational procedures and monitoring. 

CloudWatch forms the backbone of the monitoring infrastructure, collecting metrics, logs, and telemetry 

data from all components of the ML pipeline. SageMaker Model Monitor continuously evaluates 

production models for data drift and quality issues, enabling proactive maintenance and updates. 

The operational lifecycle begins in the development phase, where data scientists work in isolated 

environments with version-controlled code and data. As models progress through training and 

validation, automated processes capture performance metrics and validate results against predefined 

criteria [3]. Successful models are registered in the Model Registry and progress through staging 

environments before reaching production. 

Production deployments use blue-green deployment strategies, which enable zero-downtime updates and 

easy rollback. For cost-effective resource utilization at performance under varying loads, auto-scaling 

policies are set. The security posture of the system is kept updated through regular security audits, access 

control reviews, and compliance checks. 

Cost Optimization and Security 

Cost optimization in AI model management requires careful attention to resource utilization and 

deployment strategies [4]. The system leverages spot instances for training workloads where appropriate, 

implements auto-scaling for inference endpoints, and uses Multi-Model Endpoints to optimize hosting 

costs. Regular cost analysis and cleanup procedures prevent resource waste and control cloud 

spending.Security is implemented through a number of layers, starting with the network isolation using 

VPCs and security groups. IAM roles and policies implement the principle of least privilege, while 
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encryption protects data both at rest and in transit. Regular security audits and automated compliance 

checks ensure the environment maintains its security posture over time. 

Conclusion 

This AI Model Management solution provides organizations with a robust foundation for managing 

machine learning workflows at scale. This modular approach helps manage technical debt in machine 

learning systems [5] while maintaining software engineering best practices for ML applications [6]. This 

allows teams to ensure quality, security, and operational standards are maintained within their AI 

initiatives by using AWS services where appropriate, leveraging established operation procedures. Due 

to its modular design, the solution allows for expansion and adaptation to future needs of an organization 

and/or additional AWS services that are made available. 
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