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Abstract

The existence and uniqueness (EU) results for Boundary value problem (BVP) with Hilfer fractional derivative (HFD)
comprising integral nonlocal boundary condition(BC) are the focus of this study. To arrive at our desired findings, we
have engaged the LeraySchauder nonlinear alternative and the fixed-point theorem by Boyd and Wong on nonlinear
contractions. Additionally, examples have been provided to highlight our findings.
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1. Motivation of the study

In literature,the differential equations of fractional order have attracted more attention of the reader because of its numerous
applications rather than integer order differentials. They have been proved very helpful in modeling aspect in several fields of
science and technology. They have many numerous applications in control theory, memory and hereditary processes,
viscoelasticity etc.(see[3,13,14,15,20,26]). Various fractional derivatives like RLFD, CFD, HFD, Hadamard, Hilfer-
Hadamard, Katugampola, Miller-Ross etc. have been considered by several researchers (see[4,6,16,17,18,19,22,23] ). HFD
was introduced by R.Hilfer(see[10,11,12] ). A lot of work on IVPs involving HFD have been done by many authors
(see[7,8,25] ). But there is less work on BVP. Inspired by the work done in literature on nonlocal BVP involving HFD
(see[1,5,24]), in this paper we will establish existence and uniqueness results for solution of following BVP involving HFD
with nonlocal integral BC as

Hpoay3) +A GG, x) = 0,3 € [p,al,p =0,
@) = X(®) = 03" () = 0,x(@) = k f x()ds, V)
P

where x € C*([p,q],R),3<{<4,0<a<1,T€ (p,q), kER, A:[p,q] X R - R is a function such that A (3,0) #
0,HD%* represents HFD of order { and parameter a.

We will use the Leray Schauder nonlinear alternative and the Boyd and Wong fixed point theory on nonlinear contractions to
demonstrate our findings.

Remaining sections of the article are organised as follows: In section 2, we review fundamental principles of fractional
calculus that were utilised in this work. The qualitative results concerning existence and uniqueness results are the primary
focus of section 3. Section 4 comprises some examples authenticating the established findings followed by the conclusion of
this study.
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2. Preliminaries

With the aim of the advancement of analysis this section outlines certain fundamental concepts in fractional calculus and its
related properties with appropriate explanations.

Definition 1.[13] “RLFI of order ¢ > 0 for a continuous function x: (p, ) — R is defined as I*x(3) = %Of;(s —
s)1x(s)ds, 2

provided the integral converges at the right sides over (p,),p = 0. "

Definition 2.[13] “RLFD of order > 0, for a function x € €"((p, %), R), p = 0 is defined as R-D%(3) = r(:_o;—;f:(g -
)" ly(s)ds,n—1<{<n,wheren=[7+1, (3)
provided that the right hand side is point wise defined on (p, )."

1
I'(n-7)

Definition 3.[13] “CFD of order { > 0, for a function x € ¢"((p, »),R), p > 0 is defined as °D%x(3) = f;(a -

s)n=¢1 %x(s)ds, n—1<{<n,wheren=[{+1, @)
provided that the right hand side is point wise defined on (p, )."

Definition 4.[10] “The generalized RLFD or HFD of order { > 0 and parameter « of a function x € €™((p, ), R), p = 0 is
defined by HD%%y(3) = [4-9 pr[A-=Dy(3) (5)

Wheren—l<(<n,0£a£1,D=dia."

Remark 1. If a = 0, then HFD given by definition 4 could be expressed to RLFD and if a = 1, then the result will be the
emergence of CFD.

Definition 5.[21] “Let E be a Banach space and let A: E — E be a self map, then A is said to be a nonlinear contraction if
there exists a continuous increasing function y: Rt — R* such that ¢(0) = 0 and yi(e) < € for all € > 0 with the property ||
Axy — Axo IS Yl X, — X2 1D, forall x;,x, € E."

Lemma 1.[13]Let 3 < ¢ < 4, 3> p, then I (*'D%(3)) = X(3) — 1 — P)" = ¢, = P)2 — c3 (5 — 9)¥3 —
G—p (6)

3. Qualitative Results

After going through the fundamental ideas illustrated previously, in the next one the authors implemented the theory of fixed
points for existence and uniqueness of solutions, which is major goal of our study. In this study, the authors mainly use the
notion of compact operator for the existence of solution and the conceptualization of non-linear contraction for EU of
solution.

We define the Banach space first to continue the analysis which involves the continuous 4th order derivative functions from
[p,q] = R denoted by € = C*([p, q], R) equipped with

X lI= sup] IXG)I.

telpq

The motivation of the next lemma is to present the solution of the linear variance of BVP (1) in terms of integral equation.
Lemma?2. LetA=vy(qg—p)Y" 1 —k(t—p)Y #0, @

then solution of HFD system
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Hplay(3) +h(3) = 0,3 € [p,q],p = 0,
{ X3 3 3 €[palp ®)

x®) =X ) = 0,x"(®) = 0,x(a) = k [ x(s)ds,
-1 k(t-p)Y+A
G=»") (A(q—p)y‘ll"(l)

— L (i —s)1
oG =) h(s)ds

qu(q — §)%Th(s)ds — — 2 f;(‘t —5)% h(s)ds)

AT(T+1)

given as follows: x(3) = { )

where x € C*([p,q],R),3<{<4,0<a<1t€(pq),k€ER,h:[p,q] = Risa continuous function, y = T + 4a — Zav.
Proof. The HFD equation in (8) can be written as
[«4=0p4[A-0U-0y(3) + h(3) = 0.
When both sides are subjected to the RLFI of order ¢, we obtain
[{124-0p4A-0“-0y(3) + 1h(3) = 0.
Besides,
[{1e-0p4A-0@-0y(3) = [YD*[@-Vy(3) = [YRLDYX(3),
and as a result, we have
IYRLDYX(3) + I°h(3) = 0.
By using Lemmal,we obtain
X@ =c1G—PT+ G- PP+ G e G- )Vt — I°h().
We obtain ¢, = 0 from the first BC, x(p) = 0, which means
X@ =c1G—P"+ G- 9P + ;G- p) 7 — I°h(G). (10)
Now differentiating the equation (10) in order to obtain
X® =0 -DeG=—p)"?+ = 2)c,G—9) + (v = 3De;G—p)™* = I*"*h(R).

Again following the same procedure as above the second BC x'(p) = 0 gives the value of c; = 0. Now using the values of
constants the solution x(3) becomes

XB) = 1G9+ ¢, —p)? = I°h(3). (11)
Now differentiating two times the equation (11) in order to obtain
X'®=G-D{-2e:G—p)+ =2 —3)c;G—p)™* —I°2h(R).
c, = 0 is the result of the third BC, x"(p) = 0. By using the values of constants the solution x(3) becomes
XG3) = c1G—p)"t — *h(®). (12)
Now the BC: x(q) = kfptx (s)ds, gives the value of constant c,,

(0= )" = Fh(@) = k [ x()as,
P

from which, we get
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1 * -1
:W( f X(S)d”@f (@ =9 h“)ds)'

When the value of ¢, in (12) is substituted, we get

1 T
- - - -1 _ -1 _ EAYEST
x®) (q_p)y_1< f X(S)ds+r(§) f (a—>s) h(S)dS> G=p) T f (3 —s)"""h(s)ds.

Let
A = | y(s)ds.
fp){ s)ds
So
#=fx®%
p
k T T 1 T raq
— _ -1 _ —1(~ _ (-1
e f,, f,, G—p) X(S)d5d3+(q_p)y_1r(() L L B=p)""" (a—s)""h(s)dsd3
1 (73
o )1
F(OL f,,(3 s)*~t h(s)dsd3
_ k(z—=p) [F (T—p) N1
- f,, X ()5 4P L (q — )¢ h(s)ds
1 T
—m[p (T—S)Zh(s)ds.
So
. @=py (1 _ yl@—p) ! (F
A = Q) -L(q—sy 1h(s)ds—mjp (t = 5)$ h(s)ds.
So
_ G k@t
X(3) - (q _ p)y_l( AF(() ’fp (q S) 1 h(S)ds
_lrGa =) f "0 = ) h(s)ds + —— f (4= )1 h(s)ds) — f G — )°~1 h(s)ds
Ar@¢+1) J, r@J, r@Q
L k@—py+4 (e )
=G@-p) (mfp (g=5)"h(s)ds

' $h(s)d Ly ¢~ h(s)d
GG, € 9RO 5 [ G- nas

which is the solution as in (9).

Let’s define an operator A: C — C by in conjunction with Lemma 2.

_ —1, k(@-p)¥+4 1
ANk =G- P)y (qu(q =) A (s, x(s))ds -

f (T =) A (s, x(s))ds) — r(()f G =)L A (s, x(s))ds.

Ar({+1)
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Note. As we can see, the solutions to the nonlocal HFD system associated with integral condition (1) constitute the fixed
points of the operator A. As a result, examining operator A is sufficient to get the desired outcomes. In contemplating
additional analysis, we make the following assumptions.

(H1) The nonlinear function A satisfies

lx: — x21
2 + |y, = xal

NG x1) —AGx)l < g®)

for all 3 € [p,q] and x;, x» € R where the positive constant is defined by

vkl
AT (¢ + 2)

lk|(t —p)¥ + 14]
2 =lgl ( (q—p)S*rt +

1 -1 1
|Al(q —p)Y~ (@ +1) G M CE ) L e p)f).

rg+1)
and a continuous function g: [p,q] - R* .

(H2) There exists a continuous increasing function i: [0, o] — (0, o) and a function p € C([p, q], R*) such that

NGOl <p@YU X ID,

forall 3, x) € [p,q] X R.
(H3) A positive number M exists such that

M

o eona

Theorem 1. (Boyd and Wong fixed point theorem [2]) “Let E be a Banach space and Let A: E — E be a non linear
contraction.Then, A has a unique fixed point on E".

Theorem 2. Let (H1) holds, then the nonlocal HFD system (1) possesses an unique solution on [p, q].

%€
2*+e

Proof. We define the continuous increasing function y: Rt - R* by ¢(e) = for all € = 0 we have ¥(0) = 0 and

Y(e) < eforalle > 0. Let yq, x, € C, then for all 3 € [p,q], we have
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|A(X1 (3)) - A(Xz (3))'

|kl(z —p)" +14] *
S (3 - p)y_1(|A|(C‘{[— ::)y_lr(()fp (q - S)z_l |A (S;Xl(s)) —A (S;XZ(S))|dS
|kly

T 1 3

+mfp (=% |A (5, 2:1(8)) =A (5, x2(5)) ds) +T€)L G =) |A (5, 21(5)) =A (5, x2(5)) |ds
KGR Al ) =6l

<G-p) (|A|(q—p)v-1r(c)f,,(q IO G TN - B O]

lkly (7 11 (s) — 22 ()l I L1 (s) — x2(5)l
+|A|r(<+1)f(f 9) g(s)m+|x1(s)—x2(s)|ds)+r(ofp(3 DI T LG — O]

YUl —x D |kl(z —p)” +14] [* ) |kly ’
Shgl——— (G-»" (lﬁl(q—p)y‘lf(f)fp (g—9)° ds+—|A|F((+ 1)L (T—s)fds)

ds

ds

+%€)E(3 —5)¢"1ds)

F({Jrl)(a—p) )

< g2 a1 ) (Mll(/;l(rp—)f)ly;&lil (- +%(T )@ (g — pyr-1
r(( i %)

_ya xlm 2l .

=%l —xz ID.

Which gives that | A(x;) — AGe) 1S YUl xg — xo 1.

A is a nonlinear contraction as an outcome. As it turns out, according to the Boyd and Wong fixed point theorem, operator A
has a single fixed point which gives the solution to nonlocal HFD system.

Theorem 3. (LeraySchauder Non-linear Alternative for Single Valued Maps[9] .) “Let E be a Banach space, C a closed,
convex subset of E, U an open subset of € and 0 € U. Suppose that A: U — C is a continuous, compact map(that is, A(U) isa
relatively compact subset of C). Then either

1. Ahasa fixed pointin U ,or
2. Thereisa y € aU(the boundary of U in C) and A € (0,1) with y = 2A(y)."

Theorem 4. Let A: [p,q] X R — R be a continuous function and (H2) and (H3) hold, then the nonlocal HFD system (1)
possesses atleast one solution on [p, q].

Proof. To find fixed point of 4, we will employ Leray Schauder Non-linear Alternative for Single Valued Maps. We define
the positive constant 2 by

(k@ =p) +14]| RN ylkl
”_<|A|(q—p)y-1r(c+1)(q AR VIS ES)

@=—p)* (q—p)V 1"({ D (CEt)) )

The proof has been presented in phases..
Step 1. A is continuous:

Let us consider the the convergent sequence y,, = x in C([p, q], R). Next, for each 3 € [p, q],
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|A(®) — A(x®)]

lkl(z —p)Y + 4] (¢
<G —p)y‘l(ml(qr_ ;)V‘lf(i)fp (@ =55 |A (s, 20 ()) =A (5, x())|ds
[kly

' 1
mL (T - S){ |A (S' Xn(s)) —A (S,)((S))|ds) +

3
- — {1 _
@) fp G =9 A (5,40 () =A (5, x(s))|ds

) (kG lal Ky [t )
<IA (o () =A (L x() 1 (G =) (IAI(q—p)HF(()L(q s) ds+|A|r({+1)fp(T s)¢ds

f(a—s)f 1 ds)

O
klz—p)Y + |4 k
=IA (L xa () =A (L xO) 1 (G =) (lml(ql(_fp)f_)lrt{l +| 5@—PF %(r - v)““))
+m(3—13){)
k|( —p)¥ + 141 iyt |kly " 1
<||/\( () =A (L xO) e o TC+ D) (a—p)+r +m(f—v)(( (g - p)
F((Jrl) (g —p)%)

=IA () =A (LxO) I 0.

Which implies that | ACr,,) — AC) 1< 2 1A (L, xa () =A (1, x()) II. Also, the continuity of A implies ||A(x,) — AQ)I| -
0asn — oo,

Step 2. In €([p, q], R)A transforms bounded sets into bounded sets. Take any r > 0, we define B, = {y € C: |l y I< r} by
(H2) for each y € B, and for each 3 € [p,q] , Let L =l p Il (Il x N2 > 0, we have

(AR
<S@-pr? (

lkl(z —p) +14] (¢ _ |kly !
Ve —p)y‘ll"(()_[p (q—s)1 |/\ (s,)((s))|ds +m[p (r —5)S |/\ (s,)((s))|ds)

1 (3
+—J G =5 A (s,x(s))|ds

raeJ,
(K@= + 1l Ikly )
<l p lypll x ID(G—p¥ ! (Ml(q —p) I +1) (g—p)° +m(‘[— p)¢ 1)

1
+m(ﬁ -p)%)

<lp Il x (G- )y-l( IkI(x —p)” + 4] Ikly

_p)ty-1 4 C
DR AR T ES)

(T—p)*(q— p)y‘l)

r((+1) (a—1°%

=lp Ul x D
=1

So there exists I > 0 such that || A(x) II< . Therefore AB, < B;. Hence the claim made in step 2 is proved.

Step 3.4 maps bounded sets into equicontinuous sets of C([p, q], R).
Lett,,t, € [p,ql,t; <t,, B, be a bounded set of C([p, q], R) as in step 2, and let y € B,., then
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U—=e

[(Ax) (1) — (A ()]
=t —p) ' = —p)¥™H)

Kamp A [ e
<A(q P Ir(Q) f (=) A (s, x(s)) ds

AF((+1)[ (T —5) A(s,x(s))ds

TO <f (ty = )72 A (5, (s)) ds = f (t = )7 A (5, x()) ds
+f (t; =) A (s, x(s)) ds — f (t; =)t A (s, x(s)) ds
g p
=t =Pt =t —p)’™)
k(t—p)Y+4 q
(gt ), 69 A a) i

AF((+1)] (=5 A(s,x(s))ds

F(O (] (t, =) 1A (s )((s)) ds — j (t; — )1 A (s )((S)) ds
+f (t, =) A (s, x(s)) ds
P
=1((t = p) ™" = (4 —p)' ™)
k(t=0)YY +4 [°
(S | a9 M) i

AI"((+1)_[ (=5 A(s,x(s))ds

1 t
_TO(L (& =) A (s, x()) ds

" (6 = )1 = (6 =) 1) A (5,2(5)) ds

P

=lp Il x D((t; —p) L = (& —p)™)

k(T - p)y + A g _ 7-
(A(q p)%lf@)f (-9t ds

f (t—=15) ds

Ar(( +1)

1 1
F(() (f (t, —s)"tds

((t1 —s)Tt—(t, - 5)5_1) ds

P

).

Hence, 1| (Ay)(t,) — (Ax)(t;) Il tends to zero as t; — t,. In light of the Arzela-Ascoli theorem and steps 1 through 3, it could
easily be concluded that A is continuous, completely continuous, which makes it compact.

Step 4. Now we shall prove that there exists an open set U c C([p, q],R) s.t there isno y € dU with y = A(Ay), for0 < 1 <
1.

1JSAT23041430 Volume 14, Issue 4, October-December 2023 8
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Let y € C([p, q], R) be such that y = 2(Ay) for some 0 < A < 1.Then for each 3 € [p, q] ,we have (from step2)

5401

= A0 G)|

= [0:5916)]

<l p Iyl x DO

therefore

Il x I <1
e Il x D2

So (By H3)there exists M > 0 s.t |l y ll#= M.

Let’s establish U = {y € C([p,q], R): Il ¥ II< M}. Thus, thereisno y € dU with y = 1(Ax), 0 < A < 1. Hence by Leray

Schauder non-linear alternative, A possesses at least one fixed point y € U, which gives the solution of nonlocal HFD system
().

4, Ilustrative Examples

Examplel.Consider the nonlocal fractional HFD system

71
Hnoo _ 1 [ 1x®)I 2
D7) = = (FE2-) +2,3 € [0,1], "

2(0) = x'(0) = 0, (0) = 0, (1) =2 3¢ ()ds,

7 1 1 2 . 1 1 . . .
Here { = SA=Y == 0,g=1,7= ;,k =5 We consider g(3) = a+—4,|| g l= Eand by direct calculation 2* =

IAG x1) —A G x2)l
1 ( Ix1®-x0l
0.00802 for all 3 € [p,q] and x4, x, € R, then s 3+_4(1+|Xl(5)—;(2(5|)

X1~ x2Gl
<9G) (ﬂ*+|X1(a)—Xz(aI)'
So (H1) is satisfied.Hence by theorem2,BVP(14) has unique solution on [0,1].

Example 2. If the non linear function A (3, y) in (14) is considered as

NGD = (E5+3). (15)
Here
A G0l
1 1
W (x*+3)
<p@yd x I,

for each(3, x) € [p,q] X R, if we choose p(3) = 3%4 W) =y + % and by choosing a constant M = 99.6 > 0 such that
M
Iplp (M)

solution on [0,1].

= 1.0014577696 > 1 ,then (H2) is satisfied.Hence by theorem ', BVP (14)with A given by (15) has atleast one

1JSAT23041430 Volume 14, Issue 4, October-December 2023 9



https://www.ijsat.org/

SAT

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

5. Conclusions

In our work, we have established EU results for solution of nonlocal fractional HFD system (1)by converting it into fixed
point operator and applied fixed point theorem by Boyd and Wong on nonlinear contractions and LeraySchauder on nonlinear
alternative for single valued maps . We have covered case of our studied system 3 < ¢ < 4. Our established results are in
new configuration and enrich the literature. Examples are also have been presented to justify the results. In the future these
results can be generalized to cover the more cases for ¢, inclusion problems with multipoint BC can be considered including
Hilfer, Hilfer-Hadamard fractional derivative.
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