

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 1

Least Outstanding Requests (LOR) Algorithm in

Application Load Balancer - Performance

Review

Satish Kumar Malaraju1, Rahul Bondalapati2

1Technology Architect – DevSecOps, Austin, Texas-US
2Engineering Manager - DevSecOps, Boston, MA-US

Abstract

This research paper provides a comprehensive performance review of the Least Outstanding

Request (LOR) algorithm used in Application Load Balancers (ALBs). The paper begins with an

understanding of the LOR algorithm, explaining its role in optimizing traffic distribution across

servers by prioritizing those with the least outstanding requests. A comparative analysis between

LOR and other common load balancing algorithms is presented, highlighting their respective

strengths and weaknesses. The study offers an in-depth evaluation of LOR’s operational

mechanics within ALBs, exploring its impact on system performance, scalability, and reliability.

Additionally, the paper addresses the drawbacks and limitations of the LOR algorithm,

particularly in highly dynamic and unpredictable traffic environments. Optimization strategies

for enhancing LOR’s effectiveness are discussed, alongside practical insights into fine-tuning its

implementation. Finally, the paper presents case studies and real-world examples where LOR has

been deployed, offering valuable perspectives on its practical applications and results. This

research aims to contribute to a deeper understanding of LOR's capabilities and its potential for

improving load balancing in modern distributed systems.

Keywords: LOR Algorithm, Application Load Balancer, Load Balancing, Traffic Optimization,

Scalability, System Performance, Request Management, Distributed Systems, Algorithm

Optimization, Case Studies

1. Introduction

In the age of cloud computing and distributed systems, maintaining optimal performance and scalability

is essential to meet the growing demand for highly available, fault-tolerant applications. One of the

critical components in ensuring that these applications function efficiently is the use of Application Load

Balancers (ALBs), which help to distribute incoming network traffic across multiple backend servers.

The choice of load balancing algorithm plays a vital role in determining how effectively these traffic

distributions occur. Among the various load balancing algorithms, the Least Outstanding Request (LOR)

algorithm has emerged as a sophisticated and efficient approach to balancing server loads, particularly in

environments where request processing times may vary and server traffic is highly dynamic.[1][3]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 2

The LOR algorithm works on the principle of directing incoming requests to the server that currently has

the fewest outstanding requests. Unlike traditional load balancing strategies, which may focus on

parameters such as server health or active connections, LOR prioritizes the number of requests a server

is handling at any given time. This enables the system to dynamically adjust to traffic fluctuations,

ensuring that servers with lighter loads are utilized first, thereby preventing individual servers from

becoming overwhelmed while others remain underutilized. By focusing on the outstanding request

count, LOR aims to minimize response time, reduce the risk of server overload, and optimize the overall

utilization of system resources.

Understanding the LOR algorithm is key to appreciating its value in modern distributed systems. As

traffic patterns can be highly unpredictable, LOR provides a responsive solution by prioritizing fairness

in request distribution. It ensures that no server is inundated with requests while others are idle, allowing

for a more balanced and efficient distribution of tasks. This dynamic allocation improves not only the

scalability and availability of services but also ensures that users experience minimal latency and high

availability, critical factors in modern cloud-based applications.[2][4]

This paper delves into the workings of the LOR algorithm, providing a detailed analysis of how it

operates within Application Load Balancers. It aims to explain the principles behind LOR, how it

optimizes load balancing, and why it is well-suited for environments where server loads and traffic

demands fluctuate. Through this exploration, we will compare LOR with other common load balancing

algorithms, discuss its advantages and potential limitations, and explore practical use cases where LOR

has been implemented successfully. Ultimately, this paper seeks to offer a deeper understanding of the

LOR algorithm and its application in achieving high-performance, scalable, and reliable systems.In the

age of cloud computing and distributed systems, maintaining optimal performance and scalability is

essential to meet the growing demand for highly available, fault-tolerant applications. One of the critical

components in ensuring that these applications function efficiently is the use of Application Load

Balancers (ALBs), which help to distribute incoming network traffic across multiple backend servers.

The choice of load balancing algorithm plays a vital role in determining how effectively these traffic

distributions occur. Among the various load balancing algorithms, the Least Outstanding Request (LOR)

algorithm has emerged as a sophisticated and efficient approach to balancing server loads, particularly in

environments where request processing times may vary, and server traffic is highly dynamic.

The LOR algorithm works on the principle of directing incoming requests to the server that currently has

the fewest outstanding requests. Unlike traditional load balancing strategies, which may focus on

parameters such as server health or active connections, LOR prioritizes the number of requests a server

is handling at any given time. This enables the system to dynamically adjust to traffic fluctuations,

ensuring that servers with lighter loads are utilized first, thereby preventing individual servers from

becoming overwhelmed while others remain underutilized. By focusing on the outstanding request

count, LOR aims to minimize response time, reduce the risk of server overload, and optimize the overall

utilization of system resources.[5][7]

Understanding the LOR algorithm is key to appreciating its value in modern distributed systems. As

traffic patterns can be highly unpredictable, LOR provides a responsive solution by prioritizing fairness

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 3

in request distribution. It ensures that no server is inundated with requests while others are idle, allowing

for a more balanced and efficient distribution of tasks. This dynamic allocation improves not only the

scalability and availability of services but also ensures that users experience minimal latency and high

availability, critical factors in modern cloud-based applications.

This paper delves into the workings of the LOR algorithm, providing a detailed analysis of how it

operates within Application Load Balancers. It aims to explain the principles behind LOR, how it

optimizes load balancing, and why it is well-suited for environments where server loads, and traffic

demands fluctuate. Through this exploration, we will compare LOR with other common load balancing

algorithms, discuss its advantages and potential limitations, and explore practical use cases where LOR

has been implemented successfully. Ultimately, this paper seeks to offer a deeper understanding of the

LOR algorithm and its application in achieving high-performance, scalable, and reliable systems.

In Application Load Balancers (ALBs), the primary function is to distribute incoming network traffic

efficiently across a pool of backend servers to ensure that no server becomes overwhelmed, while also

optimizing system performance and availability. The Least Outstanding Request (LOR) algorithm plays

a crucial role in achieving this balance by focusing on a specific aspect of the load balancing process—

the number of active or pending requests that each server is currently handling.

The core concept behind the LOR algorithm is simple: when a new request arrives at the load balancer,

it is routed to the server that has the least number of outstanding requests. An "outstanding request"

refers to a request that the server has not yet completed processing. These are typically requests that are

still queued for execution or actively being worked on by the server.[8][6]

The Least Outstanding Request (LOR) algorithm in Application Load Balancers (ALBs) is designed to

optimize the distribution of incoming network traffic across multiple backend servers by focusing on the

number of pending or outstanding requests each server is handling. This method ensures that no single

server becomes overwhelmed while others remain underutilized, leading to more efficient resource

utilization, lower latency, and better scalability. The process begins when a new request arrives at the

ALB, which assesses the state of all backend servers by evaluating the number of outstanding requests

each server is currently processing, rather than relying on static parameters such as server health, CPU

load, or connection counts. By continuously monitoring and tracking the request queues of each server

in real time, the ALB identifies which server is handling the fewest active or outstanding requests. The

incoming request is then routed to this server, ensuring that traffic is distributed in a manner that

prevents server overloads and guarantees a more balanced load across the system. As the servers process

their assigned requests, the ALB dynamically adjusts its distribution strategy, using the most up-to-date

information on the outstanding requests of each server. This ongoing evaluation allows the system to

adapt to changing traffic patterns, ensuring that the load balancing mechanism remains responsive to

both sudden spikes and decreases in demand. Moreover, when a server completes a request, the number

of outstanding requests for that server decreases, which in turn allows the ALB to update its internal

tracking system and revaluate the traffic distribution. This dynamic nature of the LOR algorithm is

particularly beneficial in cloud-based environments or distributed systems, where server loads, and

request processing times may fluctuate unpredictably. One of the key advantages of the LOR algorithm

is its ability to efficiently utilize system resources, as it directs traffic to servers with fewer pending

requests, thereby preventing certain servers from being overburdened. This leads to improved response

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 4

times, as servers with lighter workloads can process requests more quickly, resulting in reduced latency

for end users. Additionally, LOR is highly adaptable and can effectively manage fluctuating traffic

patterns, unlike other algorithms that may rely on static parameters, making it well-suited for

environments with variable workloads. This adaptability also ensures that LOR continues to function

optimally even in situations where traffic patterns are highly unpredictable or subject to rapid changes.

Furthermore, as new servers are added to the ALB’s pool, the LOR algorithm can seamlessly

incorporate them into the load balancing process, ensuring that the traffic is distributed evenly across an

expanding set of servers. This scalability is crucial in maintaining the balance of load distribution as the

system grows, ensuring high availability and fault tolerance without compromising performance. For

example, imagine an ALB managing requests for a web application with four backend servers, each with

different levels of load. Server 1 may have 10 outstanding requests, Server 2 has 8, Server 3 is handling

15, and Server 4 has only 5. With the LOR algorithm, the new incoming request would be routed to

Server 4, as it has the fewest outstanding requests now. After Server 4 processes this request, the ALB

will update its tracking of outstanding requests and might reroute new requests based on the evolving

distribution of requests. By focusing on the real-time number of active requests rather than relying on

fixed parameters, the LOR algorithm provides an efficient, adaptive, and scalable solution to load

balancing, ensuring that resources are used optimally, server loads are balanced, and application

performance remains high. This makes LOR a valuable and effective load balancing algorithm for

modern distributed systems, particularly in environments where traffic is unpredictable and scalable

infrastructure is essential for maintaining high levels of service availability, reliability, and

performance.[9][11]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 5

Figure 1: Load balancing process using LOR algorithm

2. LOR vs. Other Load Balancing

The Least Outstanding Request (LOR) algorithm provides significant advantages over traditional load

balancing algorithms such as Round Robin and Weighted Round Robin. Round Robin distributes

incoming requests sequentially across a pool of servers without considering the load or capacity of each

server. While it is simple and easy to implement, it is inefficient in environments where request

complexity or server capabilities vary. For example, a server with higher processing power may end up

handling as many requests as a server with lesser capacity, leading to performance inconsistencies. On

the other hand, Weighted Round Robin attempts to address this issue by assigning weights to servers

based on their capacity, thus distributing requests proportionally. However, this algorithm still faces

limitation as it requires manual configuration of server weights and doesn't adapt to changing server load

in real-time. LOR, in contrast, directs incoming requests to the server with the fewest outstanding

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 6

requests, optimizing resource utilization, reducing latency, and adapting to fluctuating workloads. While

LOR is more dynamic and efficient for environments with varying server capabilities or unpredictable

traffic patterns, it does come with some challenges. For instance, if new servers are added, there is a

potential for flooding if the new servers are not properly integrated, and the system needs efficient health

checks to ensure that traffic is not directed to failing servers. Additionally, LOR may not be suitable for

DNS-only load balancers that operate in a no-operation mode, limiting its applicability in certain

scenarios. Overall, LOR's real-time adaptation to load fluctuations makes it more efficient than static

algorithms like Round Robin, especially in environments where the number of backends is small or the

request rate is highly variable.[12]

Table 1: Comparison Table

Algorithm Description Advantages Disadvantages

Round Robin

Distributes requests se-

quentially across serv-

ers.

Simple, easy to imple-

ment.

Inefficient for varied re-

quest complexity or serv-

er capabilities.

Weighted Round

Robin

Assigns weights to

servers based on capac-

ity and distributes re-

quests proportionally.

More efficient than

round robin for hetero-

geneous environments.

Requires manual config-

uration of weights,

doesn't adapt to changing

server load.

LOR (Least Out-

standing Re-

quest)

Directs requests to the

server with the fewest

outstanding requests.

Optimizes resource uti-

lization, reduces laten-

cy, adapts to changing

workloads.

Potential for request

flooding when new tar-

gets are added, requires

efficient health checks to

avoid directing traffic to

failing servers, operates

in a no-operation form

for DNS-only load bal-

ancers.

In summary, while each load balancing algorithm has its strengths, LOR stands out in environments

where real-time traffic distribution and server workload optimization are crucial. It is especially

beneficial for applications with dynamic traffic patterns and varying server capabilities. However, its

challenges, including the need for efficient health checks and the risk of request flooding with new

server additions, need to be managed effectively for optimal performance.[13]

3. In-depth Analysis of LOR in Application Load

The Least Outstanding Request (LOR) algorithm is a dynamic approach to load balancing, focused on

efficiently distributing incoming traffic based on the real-time number of pending requests across

backend servers. By continuously monitoring the number of active requests each server is processing,

LOR ensures that traffic is directed to the server that can handle the next request most quickly. This

approach contrasts with traditional load balancing algorithms that distribute traffic based on static

parameters such as round-robin rotation or server capacity. The in-depth analysis of LOR in Application

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 7

Load Balancing (ALB) explores its operational characteristics, benefits, and limitations, as well as real-

world applications.

LOR is particularly advantageous in environments where traffic loads fluctuate dynamically or vary

significantly in request complexity. The algorithm relies on the principle that the best server to handle

the next request is the one with the fewest pending tasks. To ensure the efficient distribution of traffic,

the LOR algorithm works through the following key steps:

• Real-Time Request Monitoring: The ALB continuously monitors the number of outstanding

requests on each server. This helps track the current load, allowing the system to react promptly

to changes in the request load.

• Request Assignment: When a new request arrives at the ALB, it is routed to the server with the

fewest active requests. The idea is to minimize response times and ensure that no server becomes

overwhelmed with traffic.

• Dynamic Load Adjustment: As requests are processed and completed, the number of outstanding

requests for each server changes. The ALB updates this information in real-time, adjusting its

traffic distribution decisions to reflect the current load on each server.

• Scalability: LOR is highly adaptable, meaning that as new backend servers are added to the pool,

the system can seamlessly incorporate them into the request distribution process. This ensures

that load balancing remains efficient as the system scales.

• Health Checks: It is crucial for the ALB to perform frequent health checks on the backend

servers to ensure that failed or unhealthy servers do not receive traffic. If a server fails, the LOR

algorithm will reroute traffic to other servers with fewer outstanding requests.[17][18]

LOR offers several key advantages over other traditional load balancing algorithms, particularly in

dynamic and heterogeneous environments:

• Optimized Resource Utilization: By directing requests to servers with fewer outstanding

requests, LOR ensures that backend servers are used more efficiently. This leads to better

resource utilization, preventing some servers from becoming underutilized while others are

overwhelmed.

• Reduced Latency: As servers with fewer outstanding requests tend to have a lighter load, they

can process new requests more quickly. This leads to reduced latency and faster response times

for end users.

• Adaptability to Fluctuating Traffic: Unlike static load balancing algorithms, which may rely on

predetermined server weights or round-robin cycles, LOR can dynamically adjust to varying

traffic loads. This is particularly useful in environments where traffic patterns can change

rapidly, such as web applications with seasonal spikes or unpredictable usage.

• Better Handling of Request Complexity: In scenarios where incoming requests may vary in terms

of complexity or processing time, LOR’s focus on outstanding requests helps avoid overloading

servers that might be struggling with more complex requests, ensuring that simpler requests are

routed to less burdened servers.

• Scalability: The LOR algorithm is naturally scalable. As new backend servers are added to the

load balancer, the system can immediately incorporate these servers into its routing decisions,

thus ensuring that the load is distributed evenly across all available resources.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 8

Figure 2: LOR Algorithm Cycle

While LOR offers significant advantages, it is not without its challenges. Several potential drawbacks

should be considered.

Table 2: Drawbacks and Limitations of LOR Algorithm

Drawback/Limitations Description

Request Flooding

When new servers are added to the

backend pool, there may be a tem-

porary imbalance in traffic distri-

bution, leading to overload on

newly added servers if the LOR

algorithm has not accounted for

their capacity.

Health Check Dependency

LOR relies heavily on frequent

health checks of backend servers.

If a server fails or becomes un-

healthy, but the load balancer is

unaware, requests may be routed

to the failed server, causing system

degradation.

Complexity with DNS-Only

Load Balancers

LOR operates less effectively in

DNS-based load balancing sys-

tems, which do not allow real-time

request monitoring. DNS load bal-

ancing only uses IP resolution, not

allowing dynamic tracking of out-

standing requests.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 9

Potential for Uneven Load in

Low-Traffic Scenarios

In environments with low traffic

volumes, the outstanding request

counts across servers might be

similar, which limits the effective-

ness of LOR as minimal load dis-

tribution occurs.

LOR is particularly beneficial in applications where requests have varying levels of complexity or where

traffic volumes fluctuate significantly.

Table 3: Some common real-world applications of LOR Algorithm

Application Description

E-commerce Websites

During high-traffic events such as sales, flash deals, or

seasonal promotions, LOR ensures backend servers can

efficiently handle increased load by directing requests to

servers with fewer pending requests.

Cloud-Based Applications

Cloud services with fluctuating demand benefit from

LOR as it allows for responsive, dynamic load balancing

across multiple servers or instances, ensuring efficient

resource usage.

Media Streaming Services

For content delivery platforms, where video streaming

demands can be high, LOR helps in dynamically manag-

ing server load by directing traffic to less burdened serv-

ers, optimizing performance and minimizing latency.

4. Drawbacks and Limitations of LOR

While the Least Outstanding Request (LOR) algorithm offers numerous advantages in dynamic load

balancing, it also has several limitations and potential drawbacks that can affect its effectiveness in

certain environments. Below are the key drawbacks and limitations that should be considered when

implementing the LOR algorithm in application load balancers:

• Flooding Request: When new servers are added to the backend pool, there can be a temporary

imbalance in how traffic is distributed, especially if the LOR algorithm has not yet fully

accounted for the capacity or processing power of the new servers. This can lead to a situation

where the newly added servers may experience an influx of requests, even though they may

not be optimized for the increased load. As a result, these servers could become overloaded or

saturated, while the existing servers with more established processing capacities may be

underutilized. This imbalance can be particularly problematic in high-traffic environments

where rapid scaling is necessary to meet demand, such as during product launches or seasonal

promotions.

• Health Check Dependency: LOR’s effectiveness is significantly reliant on the continuous

monitoring and health checks of the backend servers. For the algorithm to function properly, it

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 10

is essential that the ALB regularly verifies the health status of each server to ensure that traffic

is only routed to operational servers. If a backend server becomes unresponsive or fails without

being detected by the health check mechanism, LOR may inadvertently direct traffic to that

server. This could lead to a degradation of service, as users may experience timeouts or slower

response times when their requests are routed to a failed server. In environments where servers

frequently experience downtime or failure, ensuring that health checks are both frequent and

accurate is critical to prevent potential disruptions.[15][14]

• Complexity with DNS-Only Load Balancers: LOR is less effective in DNS-based load

balancing systems that do not allow for real-time tracking of request statuses. In DNS-only

load balancing, requests are distributed based on DNS resolution (IP address assignment),

which typically does not involve direct monitoring of server request queues. As a result, LOR

cannot dynamically adjust to fluctuating outstanding requests in such systems. DNS load

balancers generally rely on static methods to route traffic, meaning they are not equipped to

factor in the number of pending requests or the current load on backend servers. In scenarios

where traffic patterns are unpredictable, relying solely on DNS-based load balancing can result

in uneven load distribution and slower response times for end-users.

• Potential for Uneven Load in Low-Traffic Scenarios: In environments where there is low or

fluctuating traffic volume, the LOR algorithm may face limitations in its effectiveness. Since

LOR directs traffic based on the number of outstanding requests, it works best when there are

noticeable differences in load across the servers. In low-traffic situations, the number of

outstanding requests on each server might be nearly identical, making it difficult for LOR to

make optimal routing decisions. Consequently, the algorithm may not achieve significant load

balancing, and traffic could be distributed in a manner that does not fully optimize resource

utilization. In these cases, other load balancing algorithms that consider server capacity or

round-robin rotation may provide better results.

• Overhead in Real-Time Request Monitoring: While LOR offers real-time traffic management,

it comes with the overhead of continuously monitoring the outstanding request count for each

server. In large-scale systems with many backend servers, the ALB must process and track the

current load on each server at a very granular level. This constant monitoring can lead to

resource overhead, especially in systems with a high number of concurrent requests. The load

balancer may need to dedicate considerable processing power to evaluate the outstanding

request count and distribute traffic efficiently, which could negatively impact the performance

of the load balancing system itself. This issue is particularly relevant in scenarios with many

small or bursts requests, where the load balancing system must scale quickly to meet demand.

• Increased Complexity in Mixed Workload Environments: In heterogeneous environments,

where backend servers vary in processing power, memory, or network capacity, the LOR

algorithm may not always provide optimal results. While it directs traffic to servers with the

fewest pending requests, it does not consider the individual processing capabilities of the

servers. For instance, a server with fewer outstanding requests may still be less capable of

processing requests quickly due to lower hardware specifications. In such cases, LOR could

direct traffic to servers that appear lightly loaded but are unable to process requests efficiently,

resulting in slower response times and suboptimal performance. To address this, it may be

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 11

necessary to incorporate additional parameters, such as server processing power or health

status, into the load balancing decision-making process.[16][13]

• Difficulty in Handling Complex Application Architectures: LOR may struggle with application

architectures that involve complex, multi-tier or microservices-based environments. In such

architectures, requests may need to be routed to multiple backend servers or services that

specialize in different functions. For example, in microservices architecture, one request might

need to be processed by multiple services, each running on different servers. LOR, which

typically works by balancing requests based on the number of pending requests at each server,

may not fully account for the interdependencies between services in these complex

environments. This limitation can lead to inefficient load balancing, as traffic might not be

optimally distributed across all relevant services.

• Impact on Cache Efficiency: In some applications, backend servers rely on cached data to

serve requests more efficiently. LOR may disrupt cache efficiency by directing traffic to

servers that do not have the necessary cached data, leading to longer response times. For

instance, if a server with fewer pending requests is selected to handle an incoming request, but

it does not have the required data cached, the request may need to be processed from scratch,

adding latency. This could affect overall system performance, particularly in scenarios where

cache performance is crucial, such as in content delivery networks (CDNs) or media streaming

services.

Despite its strengths, the Least Outstanding Request (LOR) algorithm is not without its

challenges. These drawbacks, such as request flooding, health check dependency, and

difficulties in DNS-only environments, highlight the need for careful consideration when

implementing LOR in a load balancing system. Additionally, the algorithm's reliance on real-

time request monitoring and its potential limitations in mixed workload or low-traffic

environments make it less suited for certain applications. By understanding these limitations,

organizations can make informed decisions about when and how to implement LOR, and

whether it is the best choice for their specific use cases or if alternative load balancing

algorithms may provide better results.

5. Optimizing and Improving LOR Algorithm

While the Least Outstanding Request (LOR) algorithm is highly effective in balancing load dynamically

across servers, its inherent limitations necessitate optimization to ensure optimal performance in a varie-

ty of real-world scenarios. Below are several strategies for improving the LOR algorithm’s performance,

addressing its drawbacks, and adapting it to more complex, large-scale environments.

• Dynamic Weighting of Servers: One approach to optimize LOR in heterogeneous environments

where backend servers have varying capabilities (e.g., CPU power, memory capacity, or net-

work bandwidth) is to incorporate dynamic weighting. Instead of only considering the number

of outstanding requests, the LOR algorithm can be enhanced by factoring in the weight or capac-

ity of each server. Servers with greater processing power or resources would receive a lower

priority for traffic, while servers with fewer resources would be assigned higher priorities,

thereby balancing both the load and server capacity more effectively. For example, instead of di-

recting traffic only to the server with the fewest outstanding requests, the load balancer can pri-

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 12

oritize servers that are both lightly loaded and capable of handling the incoming traffic more ef-

ficiently based on resource availability. This dynamic adjustment allows for better resource uti-

lization while ensuring that requests are routed intelligently.

• Incorporating Health and Resource Monitoring: LOR’s reliance on health checks for backend

servers is crucial for its functionality. However, it can be optimized further by incorporating

more granular health and performance metrics into the decision-making process. In addition to

the standard health checks for server availability, the load balancer could monitor additional

metrics such as CPU usage, memory consumption, and network performance.

When combined with the number of outstanding requests, these metrics can help make more in-

formed routing decisions. For instance, even if a server has fewer outstanding requests, if it is

underperforming due to high CPU usage or memory constraints, the load balancer can avoid

routing traffic to it, ensuring better overall system performance and minimizing the risk of over-

loading already stressed servers.

• Integrating Predictive Analytics for Load Forecasting: To address the issue of traffic spikes and

sudden load fluctuations, LOR can be improved by incorporating predictive analytics and ma-

chine learning models that forecast incoming traffic patterns. By analysing historical request da-

ta, traffic trends, and seasonal fluctuations, the load balancer can anticipate future traffic de-

mands and proactively adjust load distribution before traffic surges occur.This can help mitigate

issues such as request flooding when new servers are added, and it can ensure that the system is

prepared for high-demand periods, such as during product launches or special promotions. By

combining predictive analytics with real-time load balancing, the LOR algorithm can make

more intelligent decisions and reduce the potential for temporary imbalances in traffic distribu-

tion.

• Implementing Hybrid Load Balancing Approaches: A single algorithm, such as LOR, may not

always provide the best results in complex, multi-tiered, or microservices-based applications. To

improve LOR’s performance in such environments, hybrid load balancing approaches can be

implemented. This involves combining LOR with other load balancing algorithms, such as

Round Robin or Least Connections, depending on the specific workload characteristics.

For example, for simple, static workloads, LOR may be sufficient. However, in environments

where there are more complex dependencies between servers or microservices, a hybrid ap-

proach could allow the system to switch between different algorithms based on the current sys-

tem load or workload characteristics. Hybrid models offer flexibility and can ensure optimal

traffic distribution across different types of backends.

• Healthier Request Queuing Mechanism: Another way to optimize LOR is by refining the request

queuing mechanism used to track outstanding requests. Rather than treating every request equal-

ly, the system can classify requests based on complexity or resource requirements. For example,

a system that processes requests with high computational demands can prioritize servers that

have the capacity to handle such tasks, rather than simply choosing the server with the fewest

outstanding requests.This mechanism can be augmented by adding different priority levels to

requests based on factors such as user sessions, service-level agreements (SLAs), or urgency. By

implementing this refined queuing, LOR can more effectively balance the load based on both

request complexity and server capacity, leading to better overall performance and efficiency.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 13

• Adaptive Server Pool Management: LOR can be further optimized by implementing adaptive

server pool management, which dynamically adds or removes servers from the pool based on

their performance and the current system load. For instance, when server demand decreases, less

resource-intensive servers could be deactivated temporarily to conserve energy and reduce oper-

ational costs. On the other hand, during periods of high demand, additional servers could be au-

tomatically spun up or provisioned, expanding the pool to meet the incoming traffic.This adap-

tive management ensures that the load balancer always has an optimal number of servers availa-

ble for routing requests, without overprovisioning or underutilizing resources. This helps im-

prove resource allocation efficiency and ensures that LOR operates under ideal conditions.

• Incorporating Cache Awareness: In many high-performance environments, caching plays a criti-

cal role in reducing response times and improving overall system performance. One optimiza-

tion strategy for LOR is to incorporate cache awareness into the load balancing process. Servers

that hold more relevant or frequently accessed cached data should be prioritized for routing traf-

fic, as they are more likely to handle requests more quickly than those requiring additional pro-

cessing. Cache-based load balancing could be integrated with LOR to track and consider the

state of the cache on each backend server. This would prevent LOR from directing traffic to

servers that need to recompute or fetch data from external databases, ensuring that the system

continues to perform efficiently even in high-demand situations.[7]

• Improving DNS-Only Load Balancing with LOR: In DNS-only load balancing environments,

where LOR has limitations due to its reliance on real-time request monitoring, solutions can be

implemented to improve LOR’s performance. For instance, hybrid DNS and HTTP-based load

balancing solutions could be adopted, where DNS-based routing directs traffic to an appropriate

region or data center, and then the HTTP load balancer takes over for fine-grained routing deci-

sions within the data center based on LOR. This two-step approach ensures that the system is

still able to leverage LOR’s dynamic load balancing capabilities while overcoming the inherent

limitations of DNS-based load balancing. By combining DNS with a more intelligent load bal-

ancer at the application layer, organizations can improve their overall load distribution and

scalability.[16]

Optimizing the LOR algorithm involves incorporating additional techniques, such as dynamic

server weighting, real-time health and performance metrics, predictive traffic analytics, and

cache awareness. These optimizations help address the inherent challenges of LOR, such as its

dependence on accurate health checks and its limited effectiveness in DNS-only environments.

By applying these improvements, the LOR algorithm can be adapted to handle complex, large-

scale, and highly dynamic environments, making it a more robust and efficient tool for modern

application load balancing.

6. Conclusion

The Least Outstanding Request (LOR) algorithm provides a dynamic and efficient approach to load bal-

ancing, making it particularly well-suited for applications that deal with varying request complexities

and server capabilities. By prioritizing servers that are handling the fewest outstanding requests, LOR

optimizes resource utilization, reduces latency, and adapts to fluctuating workloads. This ability to dis-

tribute traffic based on real-time demand helps ensure that no server is overwhelmed, preventing delays

and ensuring a smooth user experience.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 14

However, despite its advantages, LOR is not without its limitations. One key drawback is request flood-

ing, which may occur when new servers are added to the backend pool. If the LOR algorithm has not yet

fully accounted for the new server's capacity, this could result in an initial overload of requests directed

to it, temporarily affecting performance. Additionally, LOR is sensitive to server failures—if a server

becomes unhealthy but the load balancer does not detect it, requests may still be routed to that failing

server, leading to potential downtime or degraded service quality.

To maximize the benefits of LOR while minimizing its drawbacks, it is essential to implement robust

health checks and capacity planning. These measures help ensure that the load balancer accurately moni-

tors server status and can redirect traffic away from unhealthy or overloaded servers. Furthermore, con-

tinuous monitoring is crucial for adapting the algorithm to changing traffic patterns and identifying po-

tential issues before they impact performance.

In summary, LOR offers a compelling alternative to traditional load balancing algorithms, especially for

applications with varying request complexity and server capabilities. However, it is important to consid-

er its potential limitations, such as request flooding and sensitivity to failing targets. By incorporating

optimization strategies, including efficient health checks and proactive monitoring, the full potential of

the LOR algorithm can be realized. When implemented correctly, LOR enhances the performance,

scalability, and reliability of applications, making it a valuable tool for modern distributed systems.

References

1. Suchismita Chatterjee, 2021. "Advanced Malware Detection in Operational Technology: Signa-

ture-Based Vs. Behaviour-Based Approaches", ESP Journal of Engineering & Technology Ad-

vancements 1(2): 272-279.

2. Dani, A., et al. "Case Study: Use of AWS Lambda for Building a Serverless Chat Application."

3. Jansson, Isak. "Continuous Compliance Automation in AWS cloud environment." (2021).

4. Williams, Roy D. "Performance of dynamic load balancing algorithms for unstructured mesh

calculations." Concurrency: Practice and experience 3.5 (1991): 457-481.

5. Yan, Fulong, et al. "Load balance algorithm for an OPSquaredatacenter network under real ap-

plication traffic." Journal of Optical Communications and Networking 12.8 (2020): 239-250.

6. Guo, Jiani, and Laxmi N. Bhuyan. "Load balancing in a cluster-based web server for multimedia

applications." IEEE Transactions on Parallel and Distributed Systems 17.11 (2006): 1321-1334.

7. Bryhni, Haakon, EspenKlovning, and Oivind Kure. "A comparison of load balancing techniques

for scalable web servers." IEEE network 14.4 (2000): 58-64.

8. Dutt, Shantanu, and Nihar R. Mahapatra. "Scalable load balancing strategies for parallel A* algo-

rithms." Journal of parallel and distributed computing 22.3 (1994): 488-505.

9. Cao, Zhiruo, Zheng Wang, and Ellen Zegura. "Performance of hashing-based schemes for inter-

net load balancing." Proceedings IEEE INFOCOM 2000. Conference on Computer Communica-

tions. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies

(Cat. No. 00CH37064). Vol. 1. IEEE, 2000.

10. Al Reshan, Mana Saleh, et al. "A fast converging and globally optimized approach for load bal-

ancing in cloud computing." IEEE Access 11 (2023): 11390-11404.

11. Glazer, David William. "Load balancing parallel discrete event simulations." (1992).

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23033171 Volume 14, Issue 3, July-September 2023 15

12. Obeed, Mohanad, et al. "Joint optimization of power allocation and load balancing for hybrid

VLC/RF networks." Journal of Optical Communications and Networking 10.5 (2018): 553-562.

13. Walshaw, Chris, and Martin Berzins. "Dynamic load‐balancing for PDE solvers on adaptive un-

structured meshes." Concurrency: Practice and Experience 7.1 (1995): 17-28.

14. Liu, Yong, et al. "Highly-efficient switch migration for controller load balancing in elastic opti-

cal inter-datacenter networks." IEEE Journal on Selected Areas in Communications 39.9 (2021):

2748-2761.

15. Biswas, Rupak, and Leonid Oliker. Experiments with repartitioning and load balancing adaptive

meshes. Springer New York, 1999.

16. Iqbal, M. Ashraf, Joel H. Saltz, and S. H. Bokhart. Performance tradeoffs in static and dynamic

load balancing strategies. No. NASA-CR-178073. 1986.

17. Phillips, Steven, and Jeffery Westbrook. "Online load balancing and network flow." Proceedings

of the twenty-fifth annual ACM symposium on Theory of computing. 1993.

https://www.ijsat.org/

