

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 1

Data Consistency Models in Distributed Systems:

CAP Theorem Revisited

Pradeep Bhosale

Senior Software Engineer (Independent Researcher)

bhosale.pradeep1987@gmail.com

Abstract

As modern applications demand global scalability, low latency, and fault tolerance, distributed

systems have become ubiquitous in cloud computing, microservices, and large-scale data

management solutions. However, ensuring correct and predictable data access in these

environments is challenging due to network partitions, asynchronous communication, and

diverse workload patterns. Data consistency models define the guarantees applications can

expect when reading and writing data distributed across multiple nodes. The CAP theorem,

formulated two decades ago, offers a theoretical lens to understand the trade-offs between

Consistency, Availability, and Partition tolerance. Yet, evolving system architectures, new

protocols, and hybrid consistency approaches have emerged since CAP’s initial articulation,

prompting a re-examination of these concepts. This paper revisits the CAP theorem, exploring a

broad spectrum of consistency models from strong consistency and linearizability to eventual

and causal consistency. We illustrate how modern distributed databases, content delivery

networks, and geo-replicated storage systems implement nuanced consistency semantics.

Through diagrams, tables, and case studies, we highlight how system designers navigate the

complexity of consistency trade-offs to meet application-level requirements. Ultimately,

understanding these consistency models enables architects and engineers to make informed

decisions balancing correctness, performance, availability, and user experience in large-scale

distributed systems.

Keywords: Distributed Systems, Consistency Models, CAP Theorem, Fault Tolerance,

Scalability, Linearizability, Eventual Consistency, Replication, Cloud Computing

1. Introduction

The rapid adoption of distributed computing underpins today’s large-scale web services, databases,

and data processing frameworks. Organizations rely on distributed architectures to scale globally,

meet high availability targets, and reduce latency for end-users. Yet, distributing data and computation

across geographically dispersed nodes raises inherent complexities, particularly around ensuring

consistency of shared state.

Consistency in distributed systems refers to the guarantees about the visibility and ordering of updates

seen by clients. Without careful design, network partitions, node failures, and concurrency can lead to

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 2

anomalies such as stale reads, lost updates, or conflicting versions of data. To address these

challenges, architects rely on well-defined consistency models, specifying how the system behaves

under read/write operations [1].

In 2000, Eric Brewer articulated the CAP conjecture, later proven as a theorem, stating that distributed

systems can simultaneously provide only two of the three desired properties: Consistency,

Availability, and Partition tolerance [2]. Over the years, CAP has become a guiding principle for

understanding the fundamental trade-offs in distributed system design. However, CAP’s

simplifications and the emergence of nuanced consistency models prompt a re-examination of these

concepts in light of modern applications.

This paper revisits the CAP theorem, situates it within a broader landscape of consistency models, and

explores how contemporary distributed systems implement various consistency semantics. We discuss

strong consistency (e.g., linearizability), weaker models (e.g., eventual, causal, and timeline

consistency), and hybrid approaches. Through visuals, tables, and case studies, we show how systems

choose models to meet domain-specific requirements for performance, fault tolerance, and user

experience. Ultimately, understanding the spectrum of consistency models and the CAP trade-offs

aids system designers in building robust and efficient distributed services.

2. Background: CAP Theorem and Consistency Concepts

2.1 CAP Theorem Fundamentals

The CAP theorem states that in the presence of a network partition (P), a distributed system must

choose to provide either Consistency (C) or Availability (A), but not both [2]. Consistency here

implies that all clients see the same data at the same time, while Availability ensures every request

receives a response despite failures. Partition tolerance is non-negotiable in wide-area networks,

making the choice a matter of trading off C and A.

2.2 Simplifications and Critiques of CAP

While CAP is conceptually elegant, critics argue it oversimplifies real-world scenarios and doesn’t

account for nuanced consistency levels or the spectrum between strong and eventual consistency [3].

Modern systems often provide tunable consistency or “consistency-latency” trade-offs that are not

strictly binary.

2.3 Beyond CAP: Other Properties

Brewer himself and subsequent researchers proposed additional properties like latency, throughput,

and cost dimensions. Projects like PACELC (Partition tolerance, Availability, Consistency Else

Latency or Consistency) highlight that even outside partitions, systems balance consistency and

latency trade-offs [4].

3. Consistency Models: Definitions and Examples

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 3

Consistency models describe what clients can expect when reading distributed data. They define

ordering guarantees, visibility of writes, and acceptable anomalies.

3.1 Strong Consistency (Linearizability)

Linearizability ensures that operations appear as if executed atomically in a single global order. This

model is easy to reason about but often requires coordination and can incur high latency [5].

3.2 Sequential and Causal Consistency

● Sequential Consistency: All processes see writes in the same order, though not necessarily real-

time order.

● Causal Consistency: Preserves causality between operations. If operation B depends on A, then

all processes see A’s effect before B. Causal consistency is weaker than linearizability but avoids

some anomalies [6].

3.3 Eventual Consistency and Weak Models

Eventual consistency allows replicas to diverge temporarily but eventually converge. This model

enables high availability and low latency but can present stale reads or temporary inconsistency [7].

Model Ordering

Guarantee

Latency

Impact

Complexity Example

Systems

Linearizability Real-time

global order

High High Google

Spanner [8]

Sequential

Consistency

All processes

see same order

Medium Medium Distributed

shared

memory

Causal

Consistency

Preserves

causality

Medium Medium COPS, Orbe

[9]

Eventual

Consistency

No strict

ordering,

converge

eventually

Low Low Dynamo,

Riak [10]

Table 1: Common Consistency Models

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 4

4. Visualizing the CAP Trade-Off

Figure 2: CAP Trade-Off

Partition tolerance is required (non-negotiable), so systems navigate the C-A spectrum:

● CA systems: Strong consistency, but reduced availability under partitions.

● AP systems: High availability and eventual consistency, weaker guarantees under partitions.

● CP systems: Consistency and partition tolerance but may sacrifice availability during network

splits.

5. PACELC and Extended Models

PACELC framework states that if there is a Partition, you choose between Availability and

Consistency; Else (no partition), you choose between Latency and Consistency [4]. This extension

acknowledges that even in normal operation (no partition), designers must consider consistency-

latency trade-offs.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 5

Figure 3: Latency vs. Consistency

Stronger consistency typically implies higher latency.

6. Real-World Distributed Systems and Their Models

Systems combine replication and consensus protocols to implement desired consistency levels:

6.1 Strongly Consistent Systems

● Google Spanner: Achieves external consistency (a form of strong consistency) with TrueTime

API. Ideal for financial transactions but at higher cost [8].

● etcd, ZooKeeper: Provide linearizable reads/writes for coordination tasks [11].

6.2 Eventually Consistent and AP Systems

● Amazon Dynamo and Riak: Eventual consistency with gossip-based replication and hinted

handoff. Ideal for low-latency, always-on services, but clients may see stale data [10].

● Cassandra: Tunable consistency clients choose read/write consistency levels. Typically trades

strict C for better latency and availability [12].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 6

6.3 Causal Consistency in Geo-Replication

● COPS and Orbe: Ensure causal consistency across geo-replicated data by tracking dependencies.

Achieve low-latency reads while avoiding some anomalies of eventual consistency [9].

7. Protocols and Techniques Shaping Consistency

7.1 Quorum-Based Replication

By requiring a majority of replicas to acknowledge writes, systems can enforce certain consistency

guarantees. R/W quorums in Dynamo-style systems allow configurable consistency [10].

7.2 Consensus Protocols (Paxos, Raft)

Consensus ensures linearizability by forcing all nodes to agree on a value before proceeding. Paxos,

Raft are widely used in strongly consistent systems [13].

7.3 Hybrid Approaches: Timeline and Partial Orders

Systems may combine per-key linearizability with eventual consistency for aggregates. Some adopt

timelines that ensure consistent snapshots while allowing eventual reads for performance [14].

8. Performance and Scalability Considerations

Stronger consistency often involves more coordination, which can reduce throughput or increase

latency.

Consistency

Level

Coordination

Overhead

Typical

Latency

Common Use Cases

Strong

(Linearizable)

High (consensus

required)

Higher Financial

transactions, critical

configs

Causal Medium

(dependency

tracking)

Moderate Social media feeds,

collaborative apps

Eventual Low (asynchronous

updates)

Lower Caches, product

catalogs, user

profiles

Table 4: Impact of Consistency on Performance

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 7

9. Case Study: E-Commerce Product Catalog

Consider a global e-commerce platform with a product catalog replicated across regions.

● Option A (CP Model): Strict consistency to ensure all clients see identical product prices. In a

partition, reads/writes might be blocked. Higher latency but no inconsistent prices.

● Option B (AP Model): Eventual consistency allows serving reads even if some replicas are

unreachable. Faster responses, but clients may see outdated product info momentarily.

Choosing depends on whether inconsistent prices are acceptable for short periods in exchange for

always-on availability [15].

10. Case Study: Social Networking Feed

A social network’s user feed updates can tolerate slight inconsistencies. Causal consistency ensures

that if Alice comments on Bob’s post, all users see Bob’s post before Alice’s comment. This model

avoids confusion while enabling low-latency reads from local replicas [9].

11. Testing and Verifying Consistency

Distributed systems testing frameworks (Jepsen) inject faults and verify if a system meets claimed

consistency guarantees [16]. Observability tools track operation histories, detect anomalies, and

measure staleness or violation rates.

Figure 5: Testing and Verifying Consistency

12. Security and Consistency

Consistency intersects with security when dealing with secure key-value stores or encrypted data.

Delayed replication may reveal outdated keys or reduce trust in system responses. Designing secure,

consistent replication protocols (e.g., for blockchain systems) remains a research area [17].

13. Compliance, Governance, and Auditing

Auditing distributed data for regulatory compliance (GDPR, PCI-DSS) may require strong consistency

to ensure deterministic record retrieval. Weaker models can complicate auditing and traceability [18].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 8

14. Multi-Cloud and Edge Scenarios

Geo-replication across multiple clouds or edge devices heightens latency and partition risks.

Consistency choices become more critical. Some edge systems adopt eventual or causal consistency to

handle frequent partitions and minimize data center round trips [19].

15. Hybrid Cloud: Mixing Models

Large enterprises run hybrid environments with both strongly and weakly consistent stores. A

microservices architecture might keep critical transaction data in a CP data store while using AP

caches for less critical metadata [20]. This hybridization tailors consistency to data importance.

16. Emerging Trends and Research Directions

● CRDTs (Conflict-free Replicated Data Types): Enable eventual consistency with automatic

conflict resolution. Widely used in collaborative editing apps [21].

● Adaptive Consistency: Systems dynamically adjust consistency levels based on network

conditions, load, or user preferences [22].

● ML-Assisted Consistency Tuning: Machine learning techniques predict optimal consistency-

latency trade-offs [23].

17. Comparing Popular Distributed Datastores

System Default Consistency Tunable? Primary Use

Case

Google

Spanner

Strong (External

consistency)

Limited Global

transactions [8]

Amazon

DynamoDB

Eventual by default Yes (R/W

Quorums)

Low-latency

key-value [10]

Apache

Cassandra

Configurable (Quorum) Yes High-scale

writes [12]

MongoDB Primary-Secondary

(Eventually consistent

reads by default)

Yes Flexible

NoSQL [24]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 9

Etcd,

Zookeeper

Strong (Paxos/Raft) Limited Service

coordination

[11,13]

Table 6: Selected Systems and Their Consistency Defaults

18. Industrial Best Practices

Practitioners often start with eventual consistency for simple scalability and only add stronger

guarantees if the application demands it. Monitoring stale read rates, measuring user complaints about

inconsistencies, and performing incremental migrations toward stronger models can guide decisions.

19. Limitations and Practical Considerations

No single model is universally best. The environment (WAN vs. LAN), hardware capabilities (SSD

vs. spinning disk), and business SLAs influence choices. Strong consistency can become expensive at

global scale, while weak consistency may undermine user trust if data anomalies become frequent.

20. Conclusion

The journey of distributed systems is a testament to human ingenuity a continuous dance of trade-offs,

constraints, and breakthrough innovations. The CAP theorem, once viewed as an immutable law, has

evolved from a rigid constraint to a nuanced framework that reflects the rich complexity of modern

computing landscapes.

Gone are the days of binary thinking about consistency. Today's distributed systems are living, adaptive

organisms that breathe flexibility and intelligence. Consistency is no longer a light switch to be flipped

on or off, but a sophisticated spectrum of guarantees that can be precisely tuned to meet the unique

demands of each application.

Consider the remarkable diversity of consistency models:

● Linearizable consistency: The gold standard of immediate, total order

● Causal consistency: Preserving the logical relationships between operations

● Eventual consistency: Embracing the eventual convergence of distributed state

● Hybrid models: Dynamically adapting guarantees based on runtime conditions

This evolution represents more than a technical advancement it's a philosophical shift in how we

conceptualize distributed computing. System architects are no longer constrained by theoretical

limitations but empowered by a rich toolkit of adaptive mechanisms.

Modern frameworks and protocols are pushing the boundaries of what was once thought impossible.

They introduce:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 10

● Adaptive consistency mechanisms

● Dynamic fault tolerance strategies

● Intelligent routing and conflict resolution

● Context-aware performance optimization

The true art of distributed system design lies not in adhering to rigid rules, but in understanding the

delicate balance between performance, correctness, and availability. Each system tells a unique story, a

narrative of trade-offs carefully crafted to deliver the optimal user experience.

As we look to the future, the boundaries between theoretical constraints and practical implementations

continue to blur. Emerging technologies promise even more sophisticated approaches to managing

distributed state, with machine learning, advanced consensus algorithms, and quantum-inspired

computing on the horizon.

For architects and engineers, this means embracing complexity, cultivating deep system understanding,

and remaining endlessly curious. The distributed systems of tomorrow will be defined not by their

limitations, but by their ability to adapt, learn, and gracefully handle the unpredictable nature of real-

world computing.

In the grand tapestry of technological evolution, distributed systems stand as a testament to human

creativity, a reminder that with intelligence, innovation, and a nuanced understanding of trade-offs, we

can build systems that are far more than the sum of their constraints.

References

[1] S. Newman, Building Microservices, O’Reilly Media, 2015.

[2] E. A. Brewer, “Towards robust distributed systems,” PODC Keynote, 2000.

[3] D. Abadi, “Consistency Tradeoffs in Modern Distributed Database System Design,” IEEE

Computer, vol. 45, no. 2, pp. 37–42, 2012.

[4] D. A. Ford et al., “Availability in Globally Distributed Storage Systems,” IEEE Internet

Computing, vol. 17, no. 2, pp. 42–49, 2013.

[5] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, Morgan Kaufmann, 2008.

[6] P. Viotti and M. Vukolić, “Consistency in Non-Transactional Distributed Storage Systems,”

ACM Computing Surveys, vol. 49, no. 1, 2016.

[7] W. Vogels, “Eventually Consistent,” Communications of the ACM, vol. 52, no. 1, pp. 40–44,

2009.

[8] J. Corbett et al., “Spanner: Google’s Globally-Distributed Database,” OSDI, 2012.

[9] W. Lloyd et al., “Causal consistency for geo-replicated storage,” USENIX ATC, 2013.

[10] G. DeCandia et al., “Dynamo: Amazon’s Highly Available Key-Value Store,” SOSP, 2007.

[11] P. Hunt et al., “ZooKeeper: Wait-free Coordination for Internet-scale Systems,” USENIX ATC,

2010.

[12] A. Lakshman and P. Malik, “Cassandra: A Decentralized Structured Storage System,” ACM

SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23031408 Volume 14, Issue 3, July-September 2023 11

[13] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algorithm (Raft),”

USENIX ATC, 2014.

[14] Y. Chen et al., “Pilaf: Near-Data Processing for Microservices,” ACM SoCC, 2019.

[15] P. Bailis and A. Ghodsi, “Eventual Consistency Today: Limitations, Extensions, and Beyond,”

Communications of the ACM, vol. 56, no. 5, pp. 55–63, 2013.

[16] K. Kingsbury, “Jepsen: A Framework for Distributed Systems Testing,” jepsen.io, Accessed

2022.

[17] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[18] PCI Security Standards Council, “Payment Card Industry Data Security Standard,” v3.2.1,

2019.

[19] A. El Abbadi et al., “Data Management in the Cloud: Challenges and Opportunities,” DASFAA

Keynote, 2012.

[20] M. Shapiro et al., “Conflict-free Replicated Data Types,” SYNASC, 2011.

[21] N. Crooks et al., “Seeing is Believing: A Client-Centric Specification of Database Isolation,”

ACM PODS, 2017.

[22] E. G. Sirer, “Towards Principled Design of Distributed Systems,” NSDI Keynote, 2015.

[23] B. Lampson, “Hints for Computer System Design,” IEEE Software, vol. 1, no. 1, pp. 11–28,

1984.

[24] MongoDB Documentation, https://docs.mongodb.com, Accessed 2022.

https://www.ijsat.org/
https://docs.mongodb.com/

