

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 1

WebAssembly for High-Performance Web

Applications: A Study on Execution Speed and

Efficiency

Venkata Padma Kumar Vemuri

Santa Clara, US

padma.vemuri@gmail.com

Abstract

WebAssembly represents a remarkably intricate and low-level bytecode format that has been

meticulously engineered to facilitate the execution of code with an exceptionally high degree of

performance within web browsers, thus serving to not only complement but also frequently

surpass the capabilities of JavaScript when it comes to executing compute-intensive tasks that

require significant computational resources. This scholarly article endeavors to deliver a

comprehensive and detailed IEEE-style analysis that rigorously compares the performance

characteristics of WebAssembly against those of JavaScript, with particular emphasis on various

critical factors such as execution speed, memory efficiency, and an extensive array of real-world

use cases that are pertinent to the discussion. A methodologically robust and thorough approach is

delineated in this study, which integrates meticulously controlled benchmarking practices

alongside practical case studies that provide valuable insights into the performance dynamics of

these two technologies. The findings of this research demonstrate that in scenarios characterized

by compute-bound workloads, WebAssembly can achieve performance levels that are strikingly

close to that of native execution, often yielding speed improvements that range from a factor of 1.3

times faster to exceptionally significant enhancements when compared to the performance metrics

of JavaScript. In addition, this write-up investigates the obstacles that are intrinsically linked to

the adoption of WebAssembly, which cover matters concerning manual memory oversight and the

extra costs tied to the collaboration between JavaScript and WebAssembly, while also illuminating

prospective future trajectories for the technology that involve instituting garbage collection

solutions, refining threading functionalities, and the launch of SIMD (Single Instruction, Multiple

Data) enhancements that could elevate its performance.

Keywords: WebAssembly, JavaScript, Web Performance, Execution Speed, Memory

Management, Benchmarking, High-Performance Computing, Gaming, Cryptography,

Multimedia Processing

INTRODUCTION

For over two decades, JavaScript has served as the de facto standard for client-side web programming.

Despite its flexibility and widespread adoption, JavaScript’s performance for compute-intensive tasks—

such as numerical computations, image processing, and real-time simulations—has been a persistent

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 2

challenge [1]. Early JavaScript engines interpreted code without significant optimization, leading to slow

execution speeds for heavy workloads. Even with modern Just-In-Time (JIT) compilers and aggressive

optimizations, JavaScript’s dynamic typing and runtime checks continue to limit its raw performance,

particularly when compared to statically compiled languages like C or C++ [1].

The growing demand for high-performance web applications spurred the development of technologies

capable of delivering near-native speeds in browsers. Early initiatives, such as Mozilla’s asm.js and

Google’s Native Client (NaCl), showed promising performance gains yet suffered from portability and

ecosystem limitations [1]. In 2015, major browser vendors—including Mozilla, Google, Microsoft, and

Apple—collaborated to create a new standard: WebAssembly. This portable binary instruction format

compiles from high-level languages such as C, C++, and Rust and is designed to minimize both load

time and runtime overhead [1], [2].

Initial benchmarks were promising; for example, one study demonstrated that a C program compiled to

WebAssembly ran significantly faster than its asm.js version, with many tests approaching native

performance. With support in all major browsers now standardized, WebAssembly has rapidly been

adopted across diverse domains—from high-performance gaming and interactive media to financial

computing and machine learning. This article examines the performance advantages of WebAssembly

over JavaScript through detailed benchmarking and real-world case studies. It also discusses challenges

such as manual memory management and JS–WASM integration, and presents a forward outlook on

upcoming enhancements like garbage collection, improved threading, and SIMD optimizations.

METHODOLOGY

A rigorous performance comparison between WebAssembly and JavaScript was performed using a

combination of controlled benchmarks and real-world case studies. The methodology is described in

detail below.

Benchmark Design

Identical Workloads: Both WebAssembly and JavaScript implementations of the same algorithms or

applications were created. For instance, a suite of C/C++ benchmarks was compiled to WebAssembly

and equivalent versions were reimplemented in JavaScript. This approach ensured that performance

differences were attributable solely to the execution environment [1].

Micro-Benchmarks vs. Macro-Benchmarks:

• Micro-benchmarks focus on specific operations (e.g., matrix multiplication, hashing routines) to

stress individual components of the execution engine.

• Macro-benchmarks involve complete applications (e.g., game emulators, PDF renderers) to

assess real-world performance.

Scaling with Input Sizes:Benchmarks were executed with varying input sizes to analyze how

performance scales. Small inputs reveal raw computational speed, while large inputs help assess

memory management and cache behavior [1].

Test Environment

Consistent Hardware and Software:All tests were executed on the same hardware platform and

operating system. Benchmarks were repeated across multiple browsers (Chrome, Firefox, Edge, Safari)

to capture engine-specific optimizations and performance characteristics.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 3

Warm-Up Phases:Both WebAssembly modules and JavaScript functions were given warm-up phases

to allow JIT compilers to optimize code paths. Measurements were taken after these warm-up periods to

ensure steady-state performance was accurately captured [1].

Metrics Collection

Execution Time:High-resolution timers (e.g., performance.now()) were used to measure runtime over

many iterations.

Memory Usage:Browser profiling tools captured both peak and average memory consumption.

Energy Consumption:In select tests, power usage was monitored—particularly for mobile and IoT

scenarios—to assess energy efficiency.

 Statistical Analysis

Each benchmark was executed numerous times (often hundreds of iterations) to compute means,

medians, and standard deviations. Significance tests (such as t-tests) were conducted to verify that

observed performance differences were statistically significant. Variance and consistency in

performance, particularly for latency-sensitive applications, were also examined to ensure the reliability

of the results.This detailed methodology provides a robust basis for comparing the performance profiles

of WebAssembly and JavaScript, ensuring that our conclusions are statistically sound and reproducible.

PERFORMANCE ANALYSIS

This section examines the performance differences between WebAssembly and JavaScript. The analysis

covers the execution pipeline, memory management, CPU instruction efficiency, and the influence of

browser-specific optimizations.

Execution Pipeline and Optimizations

Load and Startup Time

WebAssembly modules are delivered in a compact binary format that is significantly faster to parse than

JavaScript source code. This advantage results in lower startup times, particularly for large applications.

The ability to compile WebAssembly modules as they stream into the browser further reduces the “time-

to-first-execution,” enabling rapid startup for interactive applications.

JIT vs. AOT Compilation

JavaScript relies on JIT compilation, optimizing code at runtime based on observed execution patterns.

In contrast, WebAssembly is compiled ahead-of-time (AOT) with static type information that allows the

removal of many runtime checks. As a result, WebAssembly exhibits lower overhead and more

predictable performance, particularly in tight loops and compute-bound tasks. This difference is a

primary factor behind the performance gap observed in benchmarks.

CPU Instruction Efficiency

WebAssembly’s low-level nature allows it to directly map high-level language constructs to efficient

machine instructions. For example, WebAssembly can natively perform 32-bit and 64-bit arithmetic,

whereas JavaScript must emulate these operations with additional runtime overhead. Experiments have

demonstrated that cryptographic routines in WebAssembly run significantly faster than their JavaScript

counterparts due to the efficient use of native CPU instructions. Specialized operations such as POPCNT

further enhance performance by reducing the number of instructions required per operation.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 4

SIMD and Parallelism

The integration of SIMD (Single Instruction Multiple Data) support in WebAssembly enables data-

parallel operations that process multiple data points simultaneously. Early implementations of SIMD in

WebAssembly have demonstrated speedups of 3× to 4× for specific operations compared to scalar

execution, making it particularly beneficial for tasks such as image processing and linear algebra.

Memory Management and Cache Behavior

Allocation Models

JavaScript uses an automatic garbage-collected heap to manage dynamic memory allocation, whereas

WebAssembly employs a linear memory model that requires explicit management. Although this can

lead to higher memory usage in WebAssembly, it avoids the unpredictable pauses associated with

garbage collection. Empirical studies have shown that for large workloads, WebAssembly may consume

significantly more memory than equivalent JavaScript implementations—a trade-off often deemed

acceptable given the computational speed gains.

Data Locality and Cache Efficiency

WebAssembly typically utilizes contiguous data structures (e.g., arrays of primitives), which enhances

CPU cache utilization and reduces memory access latency. In contrast, idiomatic JavaScript may use

more fragmented data storage, leading to a higher rate of cache misses. Improved cache efficiency in

WebAssembly contributes to its performance advantage in compute-intensive tasks.

Instruction Cache Utilization

While WebAssembly’s generated machine code is efficient, it can be larger than highly optimized native

code due to additional safety checks. This increase in code size can lead to more instruction cache

misses in certain scenarios; however, modern browser engines continue to refine WASM code

generation, and the overall reduction in runtime overhead generally compensates for these effects.

Throughput, Latency, and Energy Efficiency

High-throughput processing is critical for compute-intensive applications. WebAssembly’s efficient

execution pipeline results in higher throughput, reducing the number of CPU cycles required per

operation. This efficiency not only improves performance but also reduces energy consumption—an

important factor for mobile and IoT devices. Research indicates that for compute-bound tasks,

WebAssembly may lower energy usage significantly compared to JavaScript, thereby extending battery

life and reducing thermal output. Additionally, the deterministic execution of WebAssembly minimizes

latency fluctuations, ensuring smoother performance in real-time applications.

WASI also enables efficient execution of WebAssembly applications on constrained devices by

compiling WebAssembly ahead of time to native binaries. This approach reduces the performance gap

with native code and allows for zero-cost system calls, which is particularly beneficial for IoT and edge

devices with limited resource[7].

Cross-Browser Performance Variations

Performance differences between WebAssembly and JavaScript can vary across browser engines. For

instance, Firefox’s engine has sometimes demonstrated larger performance gains for WebAssembly

compared to Chrome’s engine, primarily due to differences in JIT compilation strategies and internal

optimizations. Although these discrepancies highlight the need for cross-browser testing, the overall

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 5

trend remains: WebAssembly generally outperforms JavaScript for compute-bound tasks, even if the

exact speedup factor varies between browsers.

Throughput and Latency Considerations

In addition to raw execution speed, WebAssembly offers significant advantages in throughput and

latency. By executing fewer instructions per operation and utilizing CPU resources more efficiently,

WebAssembly achieves higher throughput on compute-intensive tasks. For example, in image

processing and cryptographic operations, WebAssembly frequently completes tasks several times faster

than JavaScript, resulting in lower latency and improved responsiveness. This benefit is especially

critical for applications where even minimal delays can disrupt user experience, such as in real-time

gaming or financial analytics.

Energy Efficiency

Energy efficiency is crucial for mobile devices and IoT applications. WebAssembly’s ability to reduce

CPU cycles directly translates into lower energy consumption. Studies have demonstrated that, for

compute-intensive tasks, WebAssembly can achieve significant energy savings compared to JavaScript.

This reduction in energy usage not only benefits battery life in mobile contexts but also reduces

operational costs in large-scale deployments.

APPLICATIONS AND USE CASES

WebAssembly’s performance advantages are best illustrated through its diverse range of real-world

applications. In this section, we explore several key domains where WebAssembly has successfully

addressed the limitations of JavaScript.

High-Performance Web Games and Interactive Media

Web-Based Gaming

High-performance games require rapid execution of complex algorithms for physics simulation, graphics

rendering, and AI processing. Game engines such as Unity and Unreal Engine now offer WebAssembly

export options, enabling rich 3D experiences to run within browsers at near-native speeds. This

improvement results in faster load times and smoother frame rates, which are critical for delivering an

engaging gaming experience.

Retro Emulators

Emulation projects, such as those emulating vintage gaming consoles, have benefited greatly from

WebAssembly. By compiling legacy C/C++ code to WebAssembly, developers have achieved dramatic

speedups, ensuring smooth audio-visual performance and accurate emulation. These improvements have

made it possible to play retro games directly in the browser without sacrificing performance.

Interactive Design Tools

Advanced design and CAD tools have leveraged WebAssembly to deliver desktop-class performance in

the browser. By porting critical parts of complex software (such as Autodesk AutoCAD or Figma’s core

engine) to WebAssembly, these applications can process intricate operations—such as rendering vector

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 6

graphics or executing geometric transformations—with significantly improved responsiveness and

reduced load times.

Financial Computing and Data Analysis

High-Frequency Trading and Analytics

Financial applications require low latency and high throughput to process real-time market data. By

offloading computationally intensive risk models and pricing algorithms to WebAssembly modules,

trading platforms can process large volumes of data with significantly reduced latency, an improvement

that is critical in high-frequency trading environments.

Cryptographic Operations

Systems and methods for executing cryptographic operations across different types of processing

hardware can enhance the performance and flexibility of cryptographic functions. An intermediary

device can identify and distribute cryptographic operations across various hardware types, optimizing

execution based on the hardware's capabilities[8].This approach can be beneficial for WASI, which aims

to provide a consistent execution environment across different platforms, by allowing cryptographic

operations to be efficiently managed and executed on available hardware resources.

Big Data Processing

Financial analysts often handle massive datasets to derive insights and perform statistical analyses. By

compiling high-performance data processing libraries to WebAssembly, it becomes feasible to run

complex computations directly in the browser, thus reducing server load and enabling interactive, real-

time analytics.

Internet of Things (IoT) and Edge Computing

Flexibility in Edge Devices

IoT devices, which are often resource-constrained, benefit from the lightweight and portable nature of

WebAssembly. Instead of relying on full firmware updates for new functionality, IoT devices can load

updated WASM modules dynamically, enabling rapid updates and localized data processing.

Secure Execution on Resource-Constrained Devices

WebAssembly’s sandboxed runtime provides a secure execution environment, ensuring that even

untrusted code runs without compromising the system. This security is essential in industrial IoT

applications, where reliability and data integrity are paramount.

Unified Code Deployment with WASI

The development of the WebAssembly System Interface (WASI) is extending WebAssembly’s reach

beyond browsers, allowing the same WASM module to run on servers, edge devices, and IoT platforms

with minimal modifications. This unified deployment model simplifies development and ensures

consistent performance across diverse environments.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 7

CHALLENGES AND FUTURE OUTLOOK

While WebAssembly has significantly advanced the performance of web applications, several

challenges remain that will shape its future development.

Memory Management and Garbage Collection

WebAssembly’s current linear memory model requires manual memory management, leading to higher

memory usage compared to JavaScript’s garbage-collected environment. The integration of garbage

collection into the WebAssembly runtime promises to ease this burden, allowing higher-level languages

to compile to WASM more efficiently.

Interoperation Overhead

The interface between WebAssembly and JavaScript introduces overhead due to data marshalling and

context switching. Although modern engines have reduced this cost, further improvements—such as

those proposed in the Interface Types specification—are needed to allow seamless communication

between WASM and JS.

Debugging and Tooling

Debugging WebAssembly is more challenging than debugging JavaScript due to its low-level nature.

While source maps and DWARF debugging are available, the development experience remains less

mature compared to JavaScript. Continued enhancements in IDE support and debugging tools are

essential to make WebAssembly development more accessible.

Binary Size and Load Times

Despite the compact binary format of WebAssembly, large modules can lead to extended load and

compile times, particularly on slower networks or resource-constrained devices. Techniques such as

code splitting, dynamic module loading, and improved compression are being explored to minimize

these delays.

Advanced CPU Features: Threads and SIMD

Recent advancements—such as support for threading via SharedArrayBuffer and SIMD vectorization—

have significantly improved WebAssembly’s performance for parallel tasks. However, full support

across all browsers is still evolving, and configuration requirements can pose challenges. As these

features mature and become standardized, WebAssembly will be able to more fully leverage modern

multi-core processors and vectorized operations.

Expanding the Ecosystem and Developer Adoption

While WebAssembly offers clear performance benefits, many developers remain unfamiliar with its

potential. A broader adoption will require comprehensive educational resources, robust libraries, and

seamless integration with high-level languages. As the ecosystem matures, WebAssembly is expected to

become a standard part of the web development toolkit.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 8

Beyond the Browser: WASI and Cross-Platform Execution

WebAssembly is expanding its footprint beyond the browser through the WebAssembly System

Interface (WASI), which provides a standardized API for system calls. This evolution enables WASM

modules to run on servers, embedded systems, and IoT devices, simplifying development and ensuring

consistent performance across diverse platforms.

CONCLUSION

The comparison between WebAssembly (Wasm) and JavaScript in the context of modern web

applications reveals a nuanced landscape where each technology offers distinct advantages and

limitations. WebAssembly, a low-level bytecode language, is designed to serve as a compilation target

for languages like C, C++, and Rust, enabling near-native execution speeds and providing a secure,

portable format for web computation . Despite its performance potential, WebAssembly often runs

slower than native code, with studies showing an average slowdown of 45% to 55% compared to native

execution in browsers like Firefox and Chrome . This performance gap is attributed to missing

optimizations and inherent platform limitations. However, WebAssembly excels in computational tasks,

outperforming JavaScript in scenarios involving heavy computation, such as sorting large datasets.

JavaScript, on the other hand, remains superior in tasks closely tied to browser APIs and DOM

manipulation, benefiting from its deep integration with the web ecosystem. The introduction of tools like

CT-Wasm enhances WebAssembly's security by ensuring constant-time execution, crucial for

cryptographic applications, thus addressing some of the security concerns associated with JavaScript.

Furthermore, WebAssembly's interoperability with JavaScript allows for a hybrid approach, leveraging

the strengths of both technologies. Tools like WasmView facilitate debugging and testing by visualizing

function calls between WebAssembly and JavaScript, highlighting the importance of understanding their

interaction for effective application development.

Additionally, the development of standalone WebAssembly runtimes, such as TruffleWasm on

GraalVM, showcases the potential for WebAssembly to operate independently of the web, offering

interoperability with multiple languages and optimizing execution through JIT compilation . In

conclusion, while WebAssembly presents a compelling alternative to JavaScript for certain use cases,

particularly those requiring high computational efficiency and security, JavaScript's ubiquity and

superior performance in web-specific tasks ensure its continued relevance in the web development

landscape.

REFERENCES

[1] A. Jangda et al., “Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code,” Proc.

USENIX ATC 2019, 2019. [Online].

Available:https://www.usenix.org/conference/atc19/presentation/jangda

[2] Watt, C., Renner, J., Popescu, N., Cauligi, S., & Stefan, D. (2018). CT-Wasm: Type-Driven Secure

Cryptography for the Web Ecosystem. arXiv: Cryptography and Security.

https://doi.org/10.1145/3290390

[3] Szanto, A., Tamm, T., &Pagnoni, A. (2018). Taint Tracking for WebAssembly. arXiv: Cryptography

and Security.

[4] Suryś, D., Szłapa, P., &Skublewska-Paszkowska, M. (2019). WebAssembly as an alternative

solution for JavaScript in developing modern web applications. https://doi.org/10.35784/JCSI.1328

https://www.ijsat.org/
https://www.usenix.org/conference/atc19/presentation/jangda
https://doi.org/10.1145/3290390
https://doi.org/10.35784/JCSI.1328

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21022812 Volume 12, Issue 2, April-June 2021 9

[5] Romano, A., & Wang, W. (2020). WasmView: visual testing for webassembly applications.

International Conference on Software Engineering. https://doi.org/10.1145/3377812.3382155

[6] Salim, S. S., Nisbet, A., &Luján, M. (2019). Towards a WebAssembly standalone runtime on

GraalVM. International Conference on Systems. https://doi.org/10.1145/3359061.3362780

[7] Wen, E., & Weber, G. (2020b). Wasmachine: Bring the Edge up to Speed with A WebAssembly OS.

International Conference on Cloud Computing. https://doi.org/10.1109/CLOUD49709.2020.00056

[8] Chauhan, A., Kanekar, T., Patani, R., Kidd, R., Golubev, S., & Singh, H. (2016). Systems and

methods for executing cryptographic operations across different types of processing hardware.

https://www.ijsat.org/
https://doi.org/10.1145/3377812.3382155
https://doi.org/10.1145/3359061.3362780
https://doi.org/10.1109/CLOUD49709.2020.00056

