

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT20031141 Volume 11, Issue 3, July-September 2020 1

Comparative Analysis of Apache Sqoop and

Apache Spark for Efficient Data Transfer

between Relational Databases and Hadoop

Distributed File System (HDFS)

Sainath Muvva

Abstract

With the growing adoption of big data technologies like Hadoop, many companies are overhauling

their data infrastructure. A crucial aspect of this transition is the ability to transfer both

transactional and analytical data from traditional relational database management systems

(RDBMS) into the new ecosystem. This migration enables advanced data processing and facilitates

deeper analytical insights. This paper focuses on exploring the various tools available for

importing data from relational databases into the Hadoop Distributed File System (HDFS). It

delves into the underlying mechanisms of these tools and highlights the key distinctions between

them.

Keywords: HDFS, Sqoop, Spark, SQL Loaders

Introduction

Data Engineers routinely face the challenge of importing data from diverse sources into big data

ecosystems. This process, known as data ingestion, often involves using both off-the-shelf third-party

tools and custom-built solutions. Relational Database Management Systems (RDBMS) are particularly

common data sources, requiring daily ingestion for processing through established data pipelines.

The method of data ingestion can vary depending on the specific RDBMS. For instance, extracting data

from Teradata might involve using 'bteq' [1] to export data to a file, placing that file on a shared drive

accessible to the Hadoop cluster, then running a Hadoop job to load the data into a Hive text table, and

finally converting it to ORC or Parquet file formats. This multi-step process can be complex and time-

consuming.

This paper narrows its focus to two specific tools: Apache Sqoop and Apache Spark. Both utilize JDBC

(Java Database Connectivity) to establish connections with relational databases and facilitate data

transfer to the Hadoop Distributed File System (HDFS). These tools aim to streamline the data ingestion

process, offering more efficient alternatives to manual, multi-step procedures.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT20031141 Volume 11, Issue 3, July-September 2020 2

Apache Sqoop

Sqoop is a specialized tool in the Hadoop ecosystem for bidirectional data transfer between relational

databases (RDBMS) and Hadoop Distributed File System (HDFS). It offers data transformation

capabilities and utilizes MapReduce for efficient, parallel, and fault-tolerant data operations.

By streamlining the data transfer process, Sqoop enables developers to focus on data transformation and

post-import tasks. It's compatible with various databases like MySQL, Oracle, Teradata, and SQL

Server, and supports multiple file formats including Text, ORC, Parquet, and Avro.

When initiating an import, Sqoop first extracts metadata from the source RDBMS. For tables with

integer primary keys, it determines the minimum and maximum values to establish import boundaries.

The data is then split into chunks based on the specified number of mappers (default is four). If the

primary key isn't an integer, users can specify an alternative column for data splitting. Without an integer

primary key or alternative column, Sqoop uses a single mapper.

Each mapper operates as a separate database session, so it's crucial to balance the number of mappers to

avoid overwhelming the RDBMS. These mappers work concurrently, writing data to HDFS as they

process their assigned chunks.

It's worth noting that Sqoop functions solely as a mapper and doesn't support complex operations like

joins. The number of mappers should be carefully optimized to balance performance and database load.

Fig 1. Sqoop Import and ExportExecution [3]

Sqoop Import Command Example:

sqoop import \

 --connect jdbc:mysql://[Database_Server]/[Database_Name] \

 --username [User] \

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT20031141 Volume 11, Issue 3, July-September 2020 3

 --password [Password] \

 --table [Table_to_Import] \

 --target-dir[HDFS_Destination_Path] \

 --where "[Optional_SQL_Filter_Condition]"

Apache Spark

Apache Spark is a versatile, distributed computing platform designed for large-scale data processing and

analysis. It can operate independently or in conjunction with external resource management systems like

YARN, Kubernetes, or Mesos.

At its core, Spark utilizes Resilient Distributed Datasets (RDDs), which are fault-tolerant collections of

elements distributed across a cluster. These RDDs allow Spark to perform parallel operations on data

using multiple executors, enabling efficient querying and transformation of large datasets.

Building upon RDDs, Spark introduced DataFrames, which add a structured schema to the distributed

data collections. This enhancement provides a more intuitive and optimized way to work with structured

data. DataFrames are flexible and can interact with various data sources, including file systems,

relational and NoSQL databases, and real-time data streams.

This architecture allows Spark to handle a wide range of data processing tasks, from batch processing to

real-time analytics, making it a powerful tool in the big data ecosystem.

This Spark code snippet demonstrates how to establish a connection with a MySQL database and

retrieve data:

valdf = spark.read.format("jdbc")

.option("url", "jdbc:mysql://db1.zaloni.com/customer")

.option("driver", "com.mysql.jdbc.driver")

.option("dbtable", "customerProfile")

.option("user", "*****")

.option("password", "******")

.load()

Like Sqoop, Spark offers mechanisms for parallel data extraction from databases, enhancing

performance through distributed processing. Spark's approach to partitioning data for efficient retrieval

is comparable to Sqoop's split functionality.

In Spark, the 'partitionColumn' parameter serves a similar purpose to Sqoop's '--split-by' option. This

column is typically used to divide the data into manageable chunks for parallel processing.

To define the range of data to be extracted, Spark uses 'lowerBound' and 'upperBound' parameters. These

set the minimum and maximum values of the partition column, analogous to how Sqoop determines the

boundaries of its splits.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT20031141 Volume 11, Issue 3, July-September 2020 4

The 'numPartitions' parameter in Spark is crucial for parallelization. It determines how many segments

the data range is divided into, each handled by a separate task. This parameter also indirectly controls the

maximum number of simultaneous JDBC connections to the database.

It's important to note that while 'numPartitions' sets an upper limit on concurrent database connections,

the actual number may be lower. This depends on the available Spark executors for the job, which can be

influenced by cluster resources and configuration.

By leveraging these parameters, Spark can efficiently distribute the workload of data extraction across

multiple executors, potentially significantly reducing the time required for large-scale data transfers from

relational databases [4].

Fig 2. Spark Execution flow

Pros and Cons of using Spark over Sqoop

Pros:

1. Data Persistence Flexibility

- With Spark, persisting data is optional, unlike Sqoop which requires data to be persisted into HDFS

- Users can perform transformations and only persist the transformed data if needed

- Offers multiple target systems for data persistence (AVRO, Parquet, JSON, relational databases,

NoSQL databases, streams)

2. Interactive Data Processing

- Allows interactive work with data using Jupyter Notebooks or Spark Shell

- Users can examine data before deciding to persist it

- Sqoop only submits MapReduce jobs without interactive capabilities

3. Deployment Flexibility

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT20031141 Volume 11, Issue 3, July-September 2020 5

- Can run in standalone mode or with resource managers (YARN/Mesos/Kubernetes)

- Ability to start lightweight transient Spark clusters

- No competition for resources in long-running Hadoop clusters

4. Federated Data Queries

- Can join data from different sources in memory

- No need to persist data from various sources into a common location first

- Can work with multiple data sources simultaneously

Cons:

1. Data Type Mapping

- May require extending or creating new implementations of JDBCDialect

- Need to handle conversion of SQL data types to Catalyst data types

2. Performance Tuning Complexity

- Requires careful configuration of numPartitions

- Proper selection of PartitionColumn is crucial for parallelism

- Need to manage coalesce or repartition functions to optimize file writing and JDBC connections

Challenges

The primary challenge when using Spark or Sqoop for data ingestion from databases lies in managing

the high number of concurrent connections. As organizations deal with larger data volumes, the

increased parallelism can significantly impact database performance.

This issue has led many companies to reconsider their data ingestion strategies. A recommended

approach is to set up dedicated database servers specifically for Sqoop or Spark jobs. This separation

ensures that the performance degradation caused by these high-intensity operations doesn't affect the

primary servers, allowing business operations to continue uninterrupted.

For cloud-based operations, it's advisable to deploy specialized SQL loaders with enhanced memory and

CPU capabilities. These loaders are designed explicitly for Sqoop or Spark ingestion jobs. To keep data

current, companies typically establish transaction log (T-log) replication between the primary databases

and these cloud-based SQL loaders [5].

By utilizing these dedicated resources for data ingestion tasks, organizations can maintain the

performance of their primary systems while efficiently handling large-scale data transfers. This approach

strikes a balance between the need for high-volume data ingestion and the importance of maintaining

stable, responsive database services for day-to-day operations.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT20031141 Volume 11, Issue 3, July-September 2020 6

Fig 3. Sqoop/Spark using SQL Loader in Cloud

Conclusion

For importing data from relational databases into Hadoop Distributed File System (HDFS), Spark and

Sqoop are popular choices due to their seamless integration with the Hadoop ecosystem and user-

friendly nature. These tools also offer capabilities to write data to various cloud storage platforms,

including Amazon S3 and Google Cloud Storage. It's worth noting that while Spark continues to evolve

with ongoing development and regular updates, Sqoop's development has slowed. Despite this, Sqoop

remains in use in many environments.

Reference:

1. https://readvitamin.wordpress.com/2007/07/27/how-to-export-data-in-teradata-sql-using-bteq/

2. https://sqoop.apache.org/docs/1.4.7/SqoopUserGuide.html#_importing_data_into_hive

3. https://avinash333.com/spark-3/

4. Nikhil Goel, “Apache Spark vs. Sqoop: Engineering a better data pipeline”,

https://medium.com/zaloni-engineering/apache-spark-vs-sqoop-engineering-a-better-data-pipeline-

ef2bcb32b745

5. Pamela Mooney, “How to Set Up Transactional Replication”, https://www.red-gate.com/simple-

talk/databases/sql-server/database-administration-sql-server/how-to-set-up-transactional-replication/

https://www.ijsat.org/
https://readvitamin.wordpress.com/2007/07/27/how-to-export-data-in-teradata-sql-using-bteq/
https://sqoop.apache.org/docs/1.4.7/SqoopUserGuide.html#_importing_data_into_hive
https://avinash333.com/spark-3/
https://medium.com/zaloni-engineering/apache-spark-vs-sqoop-engineering-a-better-data-pipeline-ef2bcb32b745
https://medium.com/zaloni-engineering/apache-spark-vs-sqoop-engineering-a-better-data-pipeline-ef2bcb32b745
https://www.red-gate.com/simple-talk/databases/sql-server/database-administration-sql-server/how-to-set-up-transactional-replication/
https://www.red-gate.com/simple-talk/databases/sql-server/database-administration-sql-server/how-to-set-up-transactional-replication/

